Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48583
標題: 水文即時監測資料應用在河川洪水預報之研究
A Study of Applying Real-Time Hydrological Monitoring Data on River Flood Forecasting Model
作者: Shu-Horng Lin
林洙宏
指導教授: 許銘熙(Ming-Hsi Hsu)
關鍵字: 動力波模式,變量流,暴洪演算,類神經網路,河川水位預報,
Dynamic routing model,Unsteady flow,Flash flood routing,Artificial neural network,River stage forecasting,
出版年 : 2010
學位: 博士
摘要: 台灣位處亞熱帶地區,受季風氣候影響於夏秋兩季常因颱風之侵襲造成嚴重災損,若能有效結合水文監測資訊,提高洪水預報的精度並做為早期預警及防災之用,將可有效減低洪災損失。
本文以過去研究為基礎,建立結合類神經網路之洪水演算模式以進行河川洪水位預報。在雨量-水位模式部份,係將水文監測站(含雨量站及水位站)之歷史記錄,利用類神經網路模式預測水位站之短期(1-3小時)預報水位,提供做為河川洪水演算模式之邊界條件,透過河川洪水演算進而達成全河系縱向水位短期(1-3小時)預報之目的。洪水演算模式係基於動力波方程式並以四點有限差分法求解。本文以5場颱洪事件檢定雨量-水位模式,並以另3場颱洪事件進行驗證,結果顯示結合類神經網路之洪水演算模式確能精確提供全河系縱向水位短期(1-3小時)預報。
此外,本文亦建立單一河道洪水預報模式,直接採用類神經網路模式預測兩相鄰水位監測站短期(1-3小時)之預報水位作為單一河道洪水預報模式之上、下游邊界條件。模擬預報結果顯示單一河道洪水預報模式亦可提供未設站斷面之河川水位短期預報,且具有不錯之預報精度。
Taiwan located at the sub-tropic monsoon climate area. Typhoon occurrences often cause huge damages in summers and autumns. An early warning system based on the accurate flood forecast with the real-time hydrological monitoring data can be used to reduce the flood damage effectively.
A flash flood routing model with artificial neural networks (ANN) predictions was developed for stage profiles forecasting. At gauge stations in a river the artificial neural networks were used to predict the 1-3 hour lead time river stages, which were taken as interior boundaries in the flash flood routing model for the forecast of longitudinal stage profiles, including un-gauged sites of a whole river. The flash flood routing model was based on the dynamic wave equations with discretization processes of the four-point finite difference method. Five typhoon events were applied to calibrate the rainfall-stage model and other three events were simulated to verify the model’s capability. The results revealed that the flash flood river routing model incorporating with artificial neural networks can provide accurate river stages for flood forecasting.
In addition, a single river segment flood forecasting model was developed for comparison. In the single segment model, the 1-3 hour lead time river stages predictions from the ANN at the two adjacent gauge stations are imposed as upstream and downstream boundaries, respectively. The results show that the single segment model can provide accurate 1-3 hour lead time stage forecast at un-gauged sites efficiently.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48583
全文授權: 有償授權
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
2.12 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved