請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48583完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 許銘熙(Ming-Hsi Hsu) | |
| dc.contributor.author | Shu-Horng Lin | en |
| dc.contributor.author | 林洙宏 | zh_TW |
| dc.date.accessioned | 2021-06-15T07:03:12Z | - |
| dc.date.available | 2011-02-09 | |
| dc.date.copyright | 2011-02-09 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2011-01-11 | |
| dc.identifier.citation | 1. Alain, L., 1992. Estimation of Mann-strickler roughness coefficient in Saint-Venant equations, Channel flow resistance: Centeninal of Manning’s formula, pp.436-450.
2. Amein, M., Fang, C.S., 1970. Implicit flood routing in natural channels. Journal of the Hydraulics Division, ASCE, 96 (5), pp.2481-2500. 3. Babovic, V., Canizares, R., Jensen, H. R., and Klinting, A., 2001. Neural metworks as routine for error updating of numerical models. Journal of Hydraulic Engineering, 127(3), pp.181-193. 4. Bajracharya, K., and Barry, D. A., 1997. Accuracy criteria for linear diffusion wave flood routing, Journal of Hydrology, 195, pp.200-217. 5. Bedient, P. B., Holder, A., Benavides, J. A., and Vieux, B. E., 2003. Radar-based flood warning system applied to tropical storm Allison. Journal of Hydraulic Engineering, ASCE, 8(6), pp.308-318. 6. Birikundavyi, S., Labib, R., Trung, H. T., and Rousselle, J., 2002. Performance of neural networks in daily streamflow forecasting, Journal of Hydraulic Engineering, ASCE, 7, pp.392-398. 7. Bobinski, E., and Mierkiewicz, M., 1986. Recent developments in simple adaptive flow forecasting models in Poland, Hydrological Science Journal, 31(3), pp.297-320. 8. Bodri, L., and Cerma´k, V., 2000. Prediction of extreme precipitation using a neural network: application to summer flood occurrence in Moravia, Journal of Advances in Engineering Software, 31, pp.311–321. 9. Campolo, M., Andreussi, P., Soldati, A., 1999. River Flood Forecasting with a Neural Network Model. Water Resources Research, 35 (4), pp.1191-1197. 10. Chang, F. J. and Chang, Y. T., 2006, Adaptive neuro-fuzzy inference system for prediction of water level in reservoir, Advances in Water Resources, 29, pp.1-10. 11. Chang, F. J., Hwang, Y. Y., 1999. A self-organization algorithm for real-time flood forecast. Hydrological Processes, 13, pp.123-138. 12. Chang, F.J., Chang, L. C., Huang, H.L., 2002. Real-time recurrent learning neural network for stream-flow forecasting. Hydrological Processes, 16 (13), pp.2577-2588. 13. Chang, L. C., Chang, F. J., and Chiang, Y. M., 2004. A two-step-ahead recurrent neural network for stream-flow forecasting. Hydrological Processes, 18, pp.81-92. 14. Chiang Y. M., Chang F. J., Jou B. J. D., and Lin P. F., 2007, Dynamic ANN for Precipitation Estimation and Forecasting from Radar Observations, Journal of Hydrology, 334, pp.250-261. 15. Chiang, Y. M., Hsu, K.L., Chang, F.J., Hong, Y., Sorooshian, S., 2007. Merging multiple precipitation sources for flash flood forecasting. Journal of Hydrology, 340 (3-4), pp.183-196. 16. Cloke, H. L., and Pappenberger, F., 2009. Ensemble flood forecasting: A review, Journal of Hydrology, 375, pp.613-626. 17. Collier, C. G., 2007. Flash flood forecasting: What are the limits of predictability? Quarterly Journal of the Royal Meteorological Society. 133(622) Part A, pp3-23. 18. Cunge, J. A., Holly, F. M., and Verwey, A., 1980. Practical aspects of computational river hydraulics, Pitman Publishing Ltd., London. 19. Dawson, C. W., See, L. M., Abrahart, R. J., Wilby, R. L., Shamseldin, A. Y., Anctil, F., Belbachir, A. N., Bowden, G., Dandy, G., Lauzon, N., and Maier, H., 2005. A comparative study of artificial neural network technique for river stage forecasting. Proceedings of International Joint Conference on Neural Networks, Montreal, Canada. pp.2666-2670 20. Diamantopoulou, M.J., Georgiou, P.E., Papamichail, D.M., 2006. A time delay artificial neural network approach for flow routing in a river system. Hydrol. Earth Syst. Sci. Discuss., 3, pp.2735-2756. 21. Ford, D.T., 2001. Flood-Warning Decision-Support System for Sacramento, California. Joutnal of Water Resources Planning and Management, 127(4), pp.254-260. 22. Forster, S., Kneis, D., Gocht, M., and Bronstert, A., 2005, Flood risk reduction by the use of retention areas at Elbe River, Journal of Hydraulic Research de Recherches Hydrauliques, 3(1), pp.21-29. 23. Garrote, L. and Bras, R. L., 1995. A distributed model for real-time flood forecasting using digital elevation models, Journal of Hydrology, 167, pp.279-306. 24. Helmio, T., 2005, Unsteady 1D flow model of a river with partly vegetated flood plains-application to Rhine River, Environmental Modelling& Software, 20, pp.361-375. 25. Hsu, M. H., Fu, J. C., and Liu, W. C., 2003, Flood routing with real-time stage correction method for flash flood forecasting in the Tanshui River,Taiwan, Journal of Hydrology, 283, pp.267-280. 26. Hsu, M. H., Fu, J. C., and Liu, W. C., 2006, Dynamic routing model with real-time roughness updating for flood forecasting, Journal of Hydraulic Engineering, 132(6), pp.605-619. 27. Hsu, M.H., Lin, S.H., Fu, J.C., 2000. Flood forecast system model for Tanshui River basin, (IV): flood routing model, Hydroinformatics 2000 Conference, University of Iowa, Iowa, USA. 28. Imrie, C. E., Durucan, S., and Korre, A., 2000, River flow prediction using artificial neural networks: generalization beyond the calibration range, Journal of Hydrology. 233, pp. 138–158. 29. Isabela, S., Arie, B. Z., 2001. Considering diversity in precipitation variability when updating seasonal flow forecasts. Journal of Hydrology. 249, pp. 87-101. 30. Kshirsagar, M. M., Rajagopalan, B., and Lall, U., 1995. Optimal parameter estimation for Muskingum routing with ungauged lateral inflow, Journal of Hydrology. 169, pp25-35. 31. Kuchment, L. S., and Nazarov, N. A., 1999. A model of transient flow and a procedure of short-term forecasting of discharges for the Lower Vyatka river basin, Water Resources, 26(4), pp.361-367. 32. Littlewood, I.G., Clarke, R.T., Collischonn, W., Croke, B.F.W., 2007. Predicting daily streamflow using rainfall forecasts, a simple loss module and unit hydrographs: Two Brazilian catchments. Environmental Modelling & Software, 22(9), pp.1229-1239. 33. Lorrai, M., and Sechi, G. M., 1995. Neural nets for Modeling Rainfall-runoff Transformations, Water Resources Mangerment, 9, pp.299-313. 34. Luk, K. C., Ball, J. E., and Sharma, A., 2001. An application of artificial neural networks for rainfall forecasting, Mathematcal and Computer Modelling, 33, pp.683-693. 35. Madsen, H. and Skotner, C., 2005, Adaptive state updating in real-time river flow forecasting-a combined filtering and error forecasting procedure, Journal of Hydrology, 308, pp302-pp312. 36. Marco, F., and Paolo, L., 1994. A flood routing Muskingum type simulation and forecasting model based on level data alone, Water Resources Research, 30(7), pp.2183-2196. 37. Mecklenburg, S., Bell, V. A., Moore, R. J., and Joss, J., 2000. Interfacing an enhanced radar echo tracking algorithm with a rainfall-runoff model for real-time flood forecasting. Phys. Chem. Earth(B), 25(10-12), pp.1329-1333. 38. Mohan, S., 1997. Parameter estimation of nonlinear Muskingum models using genetic algorithm, Journal of Hydraulics Engineering, 123(2), pp.137-142. 39. Moore, R. J., Bell, V. A., and Jones, D. A., 2005. Forecasting for flood warning, Comptes Rendus Geoscience, 337, pp.203-217. 40. Nguyen, Q. K., and Kawano, H., 1995, Simultaneous solution for flood routing in channel networks, Journal of Hydraulic Engineering, ASCE, 121(10), pp.744-749. 41. Rajurkar, M. P., Kothyari, U. C., Chaube, U. C., 2004. Modeling of the daily rainfall-runoff relationship with artificial neural network. Journal of Hydrology, 285 (1-4), pp.96-113. 42. Riad, S., Mania, J., Bouchaou, L., Najjar, Y., 2004. Predicting catchment flow in a semi-arid region via an artificial neural network technique. Hydrological Processes, 18 (13), pp.2387-2393. 43. Saavedra, I., Lopez, J. L., Garcia-Martinez, R., 2003. Dynamic Wave Study of Flow in Tidal Channel System of San Juan River. Journal of Hydraulic Engineering, 129(7), pp.519-526. 44. Sabino, A.A., Querido, A.L., Sousa, M.I., 1999. Flood management in Cape Verde. The case study of Praia. Urban Water, 1 161-166. 45. Simon, H., 1999. Neural network: A comprehensive foundation. Second Edition. Prentice Hall. 46. Sudheer, K. P., Gosain, A. K., and Ramasastri, K. S., 2002, A data-driven algorithm for constructing artificial neural network rainfall-runoff models. Hydrological Processes, 16, pp.1325-1330. 47. Tsai, C. P., and Lee, T. L., 1999, Back-Propagation neural network in tidal-level forecasting, Journal of Waterways, Port, Coastal, and Ocean Engineering, ASCE, 125(4), pp.195-201. 48. Valverde Ramirez, M. C., Campos Velho, H. F., and Ferreira, N. J., 2005, Artificial neural network technique for rainfall forecasting applied to the Sao Paulo region, Journal of Hydrology, 301, pp146-162. 49. Wardah, T., Abu Bakar, S. H., Bardossy A. and Maznorizan M., 2008. Use of geostationary meteorological satellite images in convective rain estimation for flash-flood forecasting. Journal of Hydrology, 356(3-4), pp283-298. 50. Wong, T. S. W., and Zhou, M. C., 2003, Kinematic wave parameters and time of travel in circular channel revisited, Advances in Water Resources, 26, pp.417-425. 51. World Bank., 2005, Natural Disaster Hotspots: A Global Risk Analysis, Washington, D. C. World Bank Group. 52. Xiong, L., Shamseldinb, A. Y., O'Connor, K. M., 2001, A non-linear combination of the forecasts of rainfall-runoff models by the first-order Takagi–Sugeno fuzzy system, Journal of Hydrology, 245, pp.196-217. 53. Yen, C. L., 1985 An overview on flood routing models Proceedings of the ROC-JAPAN Joint Seminar on Multiple Hazards Mitigation. National Taiwan University, Taipei, Taiwan, pp.559-582. 54. Yen, C.L., Lee, T.H., Wang, R.Y., Yang, D.L., Hsu, M.H., 1998. Research and development of flood forecasting system model for Tanshui River Basin, Technical Report. Water Resources Agency of the Ministry of Economic Affairs. (in Chinese). 55. 王如意、易任,1979,應用水文學上、下冊,國立編譯館。 56. 王如意、游保杉、許銘熙、陳增壽,2004,即時洪水預報模式之研究與應用(I),行政院國家科學委員會專題研究計畫成果報告。 57. 王如意、游保杉、許銘熙、陳增壽,2005,即時洪水預報模式之研究與應用(II),行政院國家科學委員會專題研究計畫成果報告。 58. 王如意、潘宗毅、宋文元,2004,遞迴式類神經網路之系統識別及其於降雨-逕流模擬之應用,臺灣水利,第52卷,第4期,pp.1-14。 59. 江衍銘、張麗秋、張斐章,2002,回饋式類神經網路於二階段即時流量預測,臺灣水利,第50卷,第2期,pp.15-21。 60. 何淑敏,1999,渾沌理論與類神經網路應用於濁水溪洪水預測之研究,國立成功大學水利及海洋工程研究所碩士論文。 61. 李光敦,何曜顯,2004,納莉颱風期間基隆河水位之數值模擬與分析,台灣水利季刊,第52卷,第2 期,pp. 1-8。 62. 李鴻源、楊錦釧、葉克家、楊志達、謝慧民,1996,辦狀河系沖淤模式之發展(四),國立台灣大學土木工程研究所研究報告第8501號。 63. 李鴻源、楊錦釧、葉克家、楊志達、謝慧民,1996,辦狀河系沖淤模式之發展(四)-NETSTARS模式使用手冊,國立台灣大學土木工程研究所研究報告第8501號。 64. 周乃昉,1979,淡水河感潮段水理模式之分析,國立台灣大學土木工程研究所碩士論文。 65. 易任,1974,渠道水力學上、下冊,東華書局。 66. 高力山、吳子青、劉振宇、張斐章,2009,類神經網路於區域地下水砷濃度的推估,臺灣水利季刊,第57卷,第1期。 67. 商家瑞,2003,河系ㄧ維變量流結合卡門濾波回饋演算模式,國立台灣大學土木工程研究所碩士論文。 68. 張倉榮、蘇紹昆、廖啟勳、王嘉和,2010,熱島效應對台北都會區午後雷暴雨時空分佈之影響研究-以2009年0812水災為例,農業工程學報,第56卷,第3期,pp.85-101。 69. 張斐章、張麗秋,2005,類神經網路,東華書局。 70. 張斐章、陳彥璋、梁晉銘、孫建平、黃源義,2000,以輻狀基底函數網路建立降雨-逕流模式,臺灣水利,第48卷,第3期,pp.18-25。 71. 張斐章、黃浩倫、張麗秋,2001,回饋式類神經網路於河川流量推估之應用,農業工程學報,第47卷,第2期,pp.32-39。 72. 張智星,2004,Matlab 程式設計,清蔚科技、鈦思科技。 73. 莫拉克颱風暴雨量及洪流量分析,2009年,經濟部水利署。 74. 許少華,劉子明,1998,顯式法於明渠穿臨界流上的應用,台灣水利季刊,第46卷,第2期,pp. 38-47。 75. 許時雄,1969,淡水河感潮變量流之研究,水利復刊第七期,pp.84-123。 76. 許銘熙,1984,河川變量流非線性隱式法模式之穩定性,國立台灣大學土木工程學研究所博士論文。 77. 許銘熙,2003,台灣地區洪水災害及防治策略,工程環境特刊,第十期,pp.3-19。 78. 許銘熙、林洙宏、傅金城、陳信中,2010,結合類神經網路之動力波模式-蘭陽溪洪水預報為例,農業工程學報, 第56卷,第3期,pp.12-31。 79. 許銘熙、傅金城,1999,參數及時修正河川洪水預報模式,臺灣水利,第47卷,第1期,pp.8-18。 80. 許銘熙、傅金城、林洙宏,2000,河川動力波洪水預報模式,中國土木水利工程學刊,第12卷,第3期,pp.561-571。 81. 陳信中,2006,蘭陽溪洪水預報模式之研究,國立台灣大學生物環境系統工程學研究所碩士論文。 82. 陳昶憲、康村啟、陳建宏,1998,限制性卡門濾波器應用於馬斯金更洪水演算,臺灣水利季刊,第46卷,第2期,pp. 30-37。 83. 陳昶憲、陳建宏,1999,類神經模糊邏輯法應用於洪水位預報,中國土木水利學刊,第11卷,第2期,pp.317-326。 84. 陳昶憲、黃尹龍、吳青俊、蔡曜隆,2001,應用倒傳遞與反傳遞類神經網路模式於洪流量之預測,臺灣水利,第52卷,第3期,pp.65-77。 85. 陳昶憲、蔡國慶、黃尹龍,2001,模糊類神經網路應用於集水區出流量之預測,中國土木水利學刊,第13卷,第2期,pp.395-403。 86. 陳莉、簡大為,2001,逕流量推估之研究, 臺灣水利,第49卷,第4期,pp.55-67。 87. 陳憲宗、劉鑌鋈、游保杉,2010,應用支撐向量機與輻狀基底神經網路修正QPESUMS雨量,農業工程學報, 第56卷,第3期,pp.43-56。 88. 傅金城,2003,即時回饋演算之河川洪水預報模式,國立台灣大學生物環境系統工程學研究所博士論文。 89. 黃尹龍,2000,類神經網路架構颱洪流量預測模式,私立逢甲大學土木及水利工程研究所碩士論文。 90. 葉怡成,1999,應用類神經網路,儒林圖書有限公司。 91. 蔡明璋,2004,複式斷面河道一維與平面二維水理現象模擬之研究,國立成功大學水利及海洋工程研究所碩士論文。 92. 蔡長泰,1993,曾文溪洪水預報模式之研究(一),行政院國家科學委員會防災科技研究報告80-80號。 93. 蔡長泰、歐善惠、顏沛華、宋長虹、陳聰智,1984,濁水溪洪水預報系統之研究(二),行政院國家科學委員會防災科技研究報告73-25。 94. 蔡長泰、歐善惠、顏沛華、宋長虹、陳聰智,1985,濁水溪洪水預報系統之研究(三),行政院國家科學委員會防災科技研究報告74-38。 95. 蔡長泰、顏沛華、盧炳堃,1983,濁水溪洪水預報系統之研究(一),行政院國家科學委員會防災科技研究報告72-10號。 96. 蔡智恆、蔡長泰,1999,水深平均二維明渠變量流有限元素模式之研究,臺灣水利季刊,第47卷,第3期,pp.22-33。 97. 賴經都、王燦汶、賴坤勇,1995,以多方式特徵法建立多成分河流模式,國立台灣大學土木工程研究所研究報告(NSC83-0410-E-002-038)。 98. 鍾世豐,2007,類神經網路在洪水演算及預報之應用,國立台灣大學生物環境系統工程學研究所碩士論文。 99. 顏清連、王如意、許銘熙、楊德良、李天浩,1996-1998,淡水河整體洪水預報系統模式之研發(第一~六階段報告),台灣省水利處委辦研究計畫,國立台灣大學水工試驗所。 100. 顏清連、許銘熙,1979,排水系統之水流動態模擬,中國農業工程學報, 第25卷,第3期,pp.1-20。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48583 | - |
| dc.description.abstract | 台灣位處亞熱帶地區,受季風氣候影響於夏秋兩季常因颱風之侵襲造成嚴重災損,若能有效結合水文監測資訊,提高洪水預報的精度並做為早期預警及防災之用,將可有效減低洪災損失。
本文以過去研究為基礎,建立結合類神經網路之洪水演算模式以進行河川洪水位預報。在雨量-水位模式部份,係將水文監測站(含雨量站及水位站)之歷史記錄,利用類神經網路模式預測水位站之短期(1-3小時)預報水位,提供做為河川洪水演算模式之邊界條件,透過河川洪水演算進而達成全河系縱向水位短期(1-3小時)預報之目的。洪水演算模式係基於動力波方程式並以四點有限差分法求解。本文以5場颱洪事件檢定雨量-水位模式,並以另3場颱洪事件進行驗證,結果顯示結合類神經網路之洪水演算模式確能精確提供全河系縱向水位短期(1-3小時)預報。 此外,本文亦建立單一河道洪水預報模式,直接採用類神經網路模式預測兩相鄰水位監測站短期(1-3小時)之預報水位作為單一河道洪水預報模式之上、下游邊界條件。模擬預報結果顯示單一河道洪水預報模式亦可提供未設站斷面之河川水位短期預報,且具有不錯之預報精度。 | zh_TW |
| dc.description.abstract | Taiwan located at the sub-tropic monsoon climate area. Typhoon occurrences often cause huge damages in summers and autumns. An early warning system based on the accurate flood forecast with the real-time hydrological monitoring data can be used to reduce the flood damage effectively.
A flash flood routing model with artificial neural networks (ANN) predictions was developed for stage profiles forecasting. At gauge stations in a river the artificial neural networks were used to predict the 1-3 hour lead time river stages, which were taken as interior boundaries in the flash flood routing model for the forecast of longitudinal stage profiles, including un-gauged sites of a whole river. The flash flood routing model was based on the dynamic wave equations with discretization processes of the four-point finite difference method. Five typhoon events were applied to calibrate the rainfall-stage model and other three events were simulated to verify the model’s capability. The results revealed that the flash flood river routing model incorporating with artificial neural networks can provide accurate river stages for flood forecasting. In addition, a single river segment flood forecasting model was developed for comparison. In the single segment model, the 1-3 hour lead time river stages predictions from the ANN at the two adjacent gauge stations are imposed as upstream and downstream boundaries, respectively. The results show that the single segment model can provide accurate 1-3 hour lead time stage forecast at un-gauged sites efficiently. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T07:03:12Z (GMT). No. of bitstreams: 1 ntu-99-D92622003-1.pdf: 2174037 bytes, checksum: 21b7d341ba9d633edf16a5dae9b9c36f (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 誌 謝 I
摘 要 II Abstract III 目 錄 IV 表目錄 VII 圖目錄 VIII 圖目錄 VIII 第一章 緒 論 1 1.1 前言 1 1.2 研究方法 6 1.3 本文組織 9 第二章 相關研究概述 10 2.1 類神經網路之相關研究 10 2.2 河川洪水預報之相關研究 13 第三章 模式理論 20 3.1 類神經網路(ANN) 20 3.1.1 倒傳遞類神經網路 21 3.1.2 資料正規化 22 3.1.3 類神經網路水位預報模式 22 3.2 河川洪水位預報模式(FFRM) 23 3.2.1 動力波演算模式 23 3.2.2動力波演算模式之初始值修正 28 3.3 整合類神經網路之河川洪水位預報模式(FFRM-ANN) 30 3.4 單一河道洪水位預報模式(FFRM-SS) 32 第四章 研究區域 34 4.1 研究區域概述 34 4.2 地文資料 35 4.2.1 河道斷面 35 4.2.2 堤防高程 36 4.3 水文資料 36 4.3.1 上游邊界 37 4.3.2 河系內部水位站 37 4.3.3 下游邊界 38 4.4 現行自動化洪水預警系統簡介 38 4.4.1 自動化即時水情資訊 39 4.4.2 預報模式 39 4.4.3 洪水預警系統 40 第五章 模式之檢定 42 5.1 類神經網路模式 42 5.1.1 輸入與輸出向量 43 5.1.2模式之訓練 44 5.2 河川洪水預報模式 45 第六章 結果與討論 46 6.1 類神經網路模式之水位預報 46 6.1.1模式驗證 46 6.2河川洪水預報模式之水位預報 47 6.2.1特定水位站模擬預報水位 47 6.2.2河川縱剖面線模擬預報水位 50 6.2.3非特定水位站模擬預報水位 51 6.3單一河道演算之模擬預報效能 52 6.3.1單一河道演算之模擬預報水位 52 6.3.2 邊界條件使用率及預報模擬演算時間比較 54 第七章 結論與建議 56 7.1 結論 56 7.2 建議 58 參考文獻 60 附錄一 類神經網路權重值與偏權值修改公式 113 附錄二 類神經網路之資料正規化 117 附錄三 河川匯流處理方式 118 附錄四 最小平方法 120 附錄五 個人簡歷 122 附錄六 個人學術著作 123 | |
| dc.language.iso | zh-TW | |
| dc.subject | 動力波模式 | zh_TW |
| dc.subject | 暴洪演算 | zh_TW |
| dc.subject | 變量流 | zh_TW |
| dc.subject | 類神經網路 | zh_TW |
| dc.subject | 河川水位預報 | zh_TW |
| dc.subject | Unsteady flow | en |
| dc.subject | Dynamic routing model | en |
| dc.subject | River stage forecasting | en |
| dc.subject | Artificial neural network | en |
| dc.subject | Flash flood routing | en |
| dc.title | 水文即時監測資料應用在河川洪水預報之研究 | zh_TW |
| dc.title | A Study of Applying Real-Time Hydrological Monitoring Data on River Flood Forecasting Model | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 游保杉(Pao-Shan Yu),吳瑞賢(Ray-Shyan Wu),葉克家(Keh-Chia Yeh),李清勝(Cheng-shang Lee) | |
| dc.subject.keyword | 動力波模式,變量流,暴洪演算,類神經網路,河川水位預報, | zh_TW |
| dc.subject.keyword | Dynamic routing model,Unsteady flow,Flash flood routing,Artificial neural network,River stage forecasting, | en |
| dc.relation.page | 125 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-01-11 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 2.12 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
