Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41077
Title: 9DLT影片資料庫中頻繁樣式之資料探勘
Mining Frequent Patterns in 9DLT Video Databases
Authors: "Chen, Chun-Hung"
陳春宏
Advisor: 李瑞庭
Keyword: 資料探勘,頻繁影片樣式,9DLT字串,影片資料庫,
data mining,frequent video pattern,9DLT string,video database,
Publication Year : 2008
Degree: 碩士
Abstract: 隨著影音設備、數位相機、網路的盛行,多媒體資料系統也變得愈來愈受歡迎。因此,如何從一個影片資料庫中找出頻繁樣式越來越受到矚目。在本篇論文中,我們提出了一個有效率的探勘演算法「FVP-Miner」,用來找出影片資料庫中的頻繁樣式。演算法主要可分為兩個階段。第一階段,我們將每一段影片轉換成9DLT字串。第二階段,我們先找出所有長度為2的影像頻繁樣式,接著再對這些頻繁樣式作空間和時間上兩個維度的成長以找出所有的頻繁樣式。我們應用了三個修剪技巧和投影資料庫以去除不可能的候選樣式和加速演算法。因此,我們所提出的演算法可以有效率地在影片資料庫中找出頻繁樣式。實驗結果顯示,不管在合成資料或真實資料中,我們所提出的方法皆比改良式的Apriori演算法更有效率與擴充性。
Multimedia database systems are becoming increasingly popular owing to the widespread use of audio-video equipment, digital cameras, CD-ROMs, and the Internet. Therefore, mining frequent patterns from video databases has attracted increasing attention in recent years. In this thesis, we proposed a novel algorithm, FVP-Miner (Frequent Video Pattern Miner), to mine frequent patterns in a video database. Our proposed algorithm consists of two phases. First, we transform every video into 9DLT strings. Second, we find all frequent image 2-patterns from the database and then recursively mine the frequent patterns in the spatial and temporal dimension. We employ three pruning strategies to prune many impossible candidates, and the concept of projected database to localize the support counting, pattern joining, and candidate pruning on the projected database. Therefore, our proposed algorithm can efficiently mine the frequent patterns in a video database. The experiment results show that our proposed method is efficient and scalable, and outperforms the modified Apriori algorithm in several orders of magnitude.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41077
Fulltext Rights: 有償授權
Appears in Collections:資訊管理學系

Files in This Item:
File SizeFormat 
ntu-97-1.pdf
  Restricted Access
723.88 kBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved