請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41077完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李瑞庭 | |
| dc.contributor.author | "Chen, Chun-Hung" | en |
| dc.contributor.author | 陳春宏 | zh_TW |
| dc.date.accessioned | 2021-06-14T17:15:30Z | - |
| dc.date.available | 2010-07-01 | |
| dc.date.copyright | 2008-08-05 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-25 | |
| dc.identifier.citation | [1] J. Ayres, J. Gehrek, T. Yiu, and J. Flannick, Sequential pattern mining using a bitmap representation, Proceedings of the eighth ACM International Conference on Knowledge Discovery and Data Mining, 2002, pp. 429-435.
[2] Y.K. Chan, C.C. Chang, Spatial similarity retrieval in video databases, Journal of Visual Communication and Image Representation, Vol. 12, No. 2, 2001, pp. 107–122. [3] C.C. Chang, S.Y. Lee, Retrieval of symbolic pictures, Journal of Information Science and Engineering, Vol.7, No.3, 1991, pp. 405–422. [4] S.K. Chang, Q.Y. Shi, C.W. Yan, Iconic indexing by 2-D strings, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 9, No. 3, 1987, pp. 413–427. [5] G. Grahne, J. Zhu, Fast algorithms for frequent itemset mining using FP-trees, IEEE Transactions on Knowledge and Data Engineering, Vol. 17, No. 10, 2005, pp. 1347-1362. [6] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M. C. Hsu, Mining frequent patterns without candidate generation, Proceedings of ACM-SIGMOD International Conference on Management of Data Mining, 2000, pp. 1-12. [7] J. Han, J. Wang, Y. Lu, and P. Tzvetkov, Mining top-k frequent closed patterns without minimum support, Proceedings of the IEEE International Conference on Data Mining, Maebashi City, Japan, 2002, pp. 211-218. [8] Y.C. Huang, Mining frequent spatial co-relation patterns, Master Thesis, Department of Computer Science, National Chengchi University, Taiwan, 2004. [9] A. Inokuchi, T. Washio, and H.Motoda, An Apriori-based algorithm for miningfrequent substructures from graph data, Proceedings of European Conference on Principles and Practice of Knowledge in Databases, 2000, pp. 13-23. [10] R. Jin, C. Wang, D. Polshakov, S. Parthasarathy, G. Agarwal, Discovery frequent topological structures from graph datasets, Proceeding of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2005, pp. 606-611. [11] A. J.T. Lee, and C.S. Wang, An efficient algorithm for mining frequent inter-transaction patterns, Information Sciences, Vol. 177, No. 17, 2007, pp. 3453-3476. [12] A. J.T. Lee, R.W. Hong, W.M. Ko, W.K. Tsao, and H.H. Lin, Mining spatial association rules in image databases, Information Sciences, Vol. 177, No. 7, 2007, pp. 1593-1068. [13] B. Lei, and L.Q. Xu, Real-time outdoor video surveillance with robust foreground extraction and object tracking via multi-state transition management, Pattern Recognition Letter, Vol. 27, 2006, pp. 1816-1825. [14] C. Lucchese, S. Orlando, and R. Perego, Fast and memory efficient mining of frequent closed itemsets, IEEE Transactions on Knowledge and Data Engineering, Vol.18, No.1, 2006, pp. 21-36. [15] N. Pasquier, Y. Bastide, R. Taouil, L. Lakhal, Discovering frequent closed itemsets for association rules, Proceedings of the 7th International Conference on Database Theory, Jerusalem, Israel, 1999, pp. 398-416. [16] J. Pei, J. Han, B. Mortazavi-Asl, and H. Pinto, PrefixSpan: mining sequential patterns efficiently by prefix-projected pattern growth, Proceedings of the International Conference on Data Engineering, 2001, pp. 215-224. [17] J. Pei, J. Han, and R. Mao, CLOSET: an efficient algorithm for mining frequent closed itemsets, Proceedings of the 5th ACM-SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, Dallas, Texas, 2000, pp. 11-20. [18] B. Rozenberg, E. Gudes, Association rules mining in vertically partitioned databases, Data and Knowledge Engineering, Vol. 59, No. 2, 2006, pp. 378-396. [19] R. Srikant, and R. Agrawal, Fast algorithms for mining association rules, Proceedings of the 20th International Conference Very Large Data Bases, 1994, pp. 487-499. [20] R. Srikant, and R. Agrawal, Mining sequential patterns, Proceedings of the International Conference on Data Engineering, Taipei, Taiwan, 1995, pp. 3-14. [21] R. Srikant, and R. Agrawal, Mining sequential patterns: generalizations and performance improvements, Proceedings of the 5th International Conference on Extending Database Technology, 1996, pp. 3-17. [22] T. Uno, T. Asai, Y. Uchida, and H. Arimura, An efficient algorithm for enumerating closed patterns in transaction databases, Proceedings of the 7th International Conference on Discovery Science, Padova, Italy, 2004, pp.16-31. [23] Y. Wang, Image indexing and similarity retrieval based on spatial relationship model, Information Sciences, Vol.154, No. 1-2, 2003, pp. 39–58. [24] X. Yan and J. Han, gSpan: graph-based substructure pattern mining, Proceedings of International Conference on Data Mining, 2002, pp. 721-724. [25] X. Yan, J. Han, and R. Afshar, CloSpan: Mining closed sequential patterns in large datasets, Proceedings SIAM International Conference on Data Mining, 2003, pp. 166-177. [26] M. J. Zaki, SPADE: an efficient algorithm for mining frequent sequences, Machine Learning, Vol. 42, No. 1-2, 2001, pp. 31-60. [27] M. J. Zaki, K. Gouda, Fast vertical mining using diffsets, Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, D.C., USA, 2003, pp. 326-335. [28] M. J. Zaki, and C. Hsiao, Efficient algorithms for mining closed itemsets and their lattice structure, IEEE Transactions on Knowledge and Data Engineering, Vol. 17, No. 4, 2005, pp. 462-478. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41077 | - |
| dc.description.abstract | 隨著影音設備、數位相機、網路的盛行,多媒體資料系統也變得愈來愈受歡迎。因此,如何從一個影片資料庫中找出頻繁樣式越來越受到矚目。在本篇論文中,我們提出了一個有效率的探勘演算法「FVP-Miner」,用來找出影片資料庫中的頻繁樣式。演算法主要可分為兩個階段。第一階段,我們將每一段影片轉換成9DLT字串。第二階段,我們先找出所有長度為2的影像頻繁樣式,接著再對這些頻繁樣式作空間和時間上兩個維度的成長以找出所有的頻繁樣式。我們應用了三個修剪技巧和投影資料庫以去除不可能的候選樣式和加速演算法。因此,我們所提出的演算法可以有效率地在影片資料庫中找出頻繁樣式。實驗結果顯示,不管在合成資料或真實資料中,我們所提出的方法皆比改良式的Apriori演算法更有效率與擴充性。 | zh_TW |
| dc.description.abstract | Multimedia database systems are becoming increasingly popular owing to the widespread use of audio-video equipment, digital cameras, CD-ROMs, and the Internet. Therefore, mining frequent patterns from video databases has attracted increasing attention in recent years. In this thesis, we proposed a novel algorithm, FVP-Miner (Frequent Video Pattern Miner), to mine frequent patterns in a video database. Our proposed algorithm consists of two phases. First, we transform every video into 9DLT strings. Second, we find all frequent image 2-patterns from the database and then recursively mine the frequent patterns in the spatial and temporal dimension. We employ three pruning strategies to prune many impossible candidates, and the concept of projected database to localize the support counting, pattern joining, and candidate pruning on the projected database. Therefore, our proposed algorithm can efficiently mine the frequent patterns in a video database. The experiment results show that our proposed method is efficient and scalable, and outperforms the modified Apriori algorithm in several orders of magnitude. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-14T17:15:30Z (GMT). No. of bitstreams: 1 ntu-97-R95725035-1.pdf: 741257 bytes, checksum: a346563d4c8cb0cd4aa5d8b57c67c41a (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | Table of Contents i
List of Figures ii List of Tables iii Chapter 1 Introduction 1 Chapter 2 Preliminaries and Problem Definitions 5 Chapter 3 Our Proposed Method 11 3.1 Pattern generation 11 3.1.1 FVP-tree 11 3.1.2 Pattern generation 12 3.2 The pruning strategies 13 3.3 FVP-Miner algorithm 15 3.4 An example 20 Chapter 4 Performance Evaluation 23 4.1 Synthetic data 24 4.2 Performance evaluation on synthetic data 24 4.3 Performance evaluation on real data 28 Chapter 5 Conclusions and Future Work 33 References 35 | |
| dc.language.iso | en | |
| dc.subject | 9DLT字串 | zh_TW |
| dc.subject | 資料探勘 | zh_TW |
| dc.subject | 頻繁影片樣式 | zh_TW |
| dc.subject | 影片資料庫 | zh_TW |
| dc.subject | frequent video pattern | en |
| dc.subject | data mining | en |
| dc.subject | video database | en |
| dc.subject | 9DLT string | en |
| dc.title | 9DLT影片資料庫中頻繁樣式之資料探勘 | zh_TW |
| dc.title | Mining Frequent Patterns in 9DLT Video Databases | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 劉敦仁,陳彥良 | |
| dc.subject.keyword | 資料探勘,頻繁影片樣式,9DLT字串,影片資料庫, | zh_TW |
| dc.subject.keyword | data mining,frequent video pattern,9DLT string,video database, | en |
| dc.relation.page | 36 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-28 | |
| dc.contributor.author-college | 管理學院 | zh_TW |
| dc.contributor.author-dept | 資訊管理學研究所 | zh_TW |
| 顯示於系所單位: | 資訊管理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 723.88 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
