Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38711
Title: 圖形的測地線數
Geodetic Numbers of Graphs
Authors: Chaur-Shang Kang
康朝翔
Advisor: 張鎮華
Keyword: 測地線數,
Geodetic Numbers,
Publication Year : 2005
Degree: 碩士
Abstract: 本文所討論的圖形均為簡單圖,即頂點個數為有限、邊的兩端點不一樣、邊沒有方向、以及兩個頂點之間最多只有一條邊。
對圖形G裡的任意兩個頂點u和v,集合I(u, v)為包含了u和v,以及所有位於長度為d(u, v)、端點為u和v的路徑上面的所有頂點的集合。如果S是一個頂點的子集合,則I(S)表示所有任意在S裡的兩個點u和v所構成的I(u, v)的聯集。如果I(S)剛好就是所有的頂點的話,我們就稱S為測地線集。而測地線數,g(G),就是最小的測地線集的大小。
在第一節我們介紹一些本論文所用及的定義。
第二節我們將討論圖形迪氏積的測地線數,主要的結果是對任意兩個圖形都有
g(G)≦ g(G□H),且在一些特殊的條件下等號會成立。
第三節則討論到補可簡化圖的測地線數的上界。並且我們定義了2-N-支配,一個2-N-支配集D的定義是任意一個不在集合D裡的頂點v,必有兩個不相鄰的鄰居在集合D裡面,而2-N-支配數則是最小的2-N-支配集的大小。並討論一些測地線數和2-N-支配數的等價關係。
第四節討論到樹形補可簡化圖的測地線數的上界,還設計了一個演算法來求在一個樹形圖上的2-N-支配數。
All graphs in this thesis are simple, i.e., finite, undirected, loopless and without multiple edges.
For any two vertices u and v of a graph G, a u-v geodesic is a path of length d(u, v). The set I(u, v) consists of all vertices lying on some u-v geodesic of G.. If S is a subset of V(G), then I(S) is the union of all sets I(u, v) for u and v in S. The geodetic number g(G) is the minimum cardinality among the subset S of V(G) with I(S)=V(G).
In section 1, we introduce some definitions, which is used in this thesis.
In section 2, we discuss geodetic numbers on Cartesian products of graphs. The main result is g(G) ≦ g(G□H) for any two graphs G and H. And g(G)=g(G□H) for some H with some special condition.
In section 3, we discuss an upper bound of geodetic numbers of cographs. A 2-N-dominating set of a graph G is a vertex subset D such that every vertex not in D is adjacent to two distinct non-adjacent vertices in D. Denote by g2(G) the minimum cardinality of a 2-N-dominating set in G. And we discuss the relation between geodetic numbers and 2-N-domination numbers.
In section 4, we define tree-cographs and term f-domination. And we design an algorithm to find the 2-N-domination number of a tree-cograph.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38711
Fulltext Rights: 有償授權
Appears in Collections:數學系

Files in This Item:
File SizeFormat 
ntu-94-1.pdf
  Restricted Access
142.7 kBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved