請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38711
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張鎮華 | |
dc.contributor.author | Chaur-Shang Kang | en |
dc.contributor.author | 康朝翔 | zh_TW |
dc.date.accessioned | 2021-06-13T16:43:02Z | - |
dc.date.available | 2005-07-26 | |
dc.date.copyright | 2005-07-26 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-06-30 | |
dc.identifier.citation | [1] M. Atici, Graph operations and geodetic numbers. Proceedings of the Thirtieth
Southeastern International Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, FL, 1999) 141 (1999), 95{110. [2] M. Atici, On the edge geodetic number of a graph, Int. J. Comput. Math. 80 (2003), no. 7, 853{861. [3] G. B. Chae, E. M. Palmer and W. C. Siu, Geodetic number of random graphs of diameter 2, Australas. J. Combin. 26 (2002), 11{20. [4] G. Chartrand, F. Harary and P. Zhang, On the geodetic number of a graph, Networks 39 (2002), 1{6. [5] G. Chartrand, E. M. Palmer and P. Zhang, The geodetic number of a graph: a survey, Proceedings of the Thirty-third Southeastern International Conference on Combinatorics, Graph Theory and Computing (Boca Raton, FL, 2002) 156 (2002), 37{58. [6] G. Chartrand and P. Zhang, The forcing geodetic number of a graph, Discuss. Math. Graph Theory 19 (1999), no. 1, 45{58. [7] G. Chartrand and P. Zhang, The geodetic number of an oriented graph, European J. Combin 21 (2000), no. 2, 181{189. [8] A. L. Douthat and M. C. Kong, Computing the geodetic number of bipartite graphs, Proceedings of the Twenty-sixth Southeastern International Conference 16 on Combinatorics Graph Theory and Computing (Boca Raton, FL, 1995) 107 (1995), 113{119. [9] F. Harary, E. Loukakis and C. Tsouros The geodetic number of a graph, Graph- theoretic Models in Computer Science, II (Las Cruces, NM, 1988{1990), Math. Comput. Modelling 17 (1993), no. 11, 89{95. [10] P. Zhang, The upper forcing geodetic number of a graph, Ars Combin 62 (2002), 3{15 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38711 | - |
dc.description.abstract | 本文所討論的圖形均為簡單圖,即頂點個數為有限、邊的兩端點不一樣、邊沒有方向、以及兩個頂點之間最多只有一條邊。
對圖形G裡的任意兩個頂點u和v,集合I(u, v)為包含了u和v,以及所有位於長度為d(u, v)、端點為u和v的路徑上面的所有頂點的集合。如果S是一個頂點的子集合,則I(S)表示所有任意在S裡的兩個點u和v所構成的I(u, v)的聯集。如果I(S)剛好就是所有的頂點的話,我們就稱S為測地線集。而測地線數,g(G),就是最小的測地線集的大小。 在第一節我們介紹一些本論文所用及的定義。 第二節我們將討論圖形迪氏積的測地線數,主要的結果是對任意兩個圖形都有 g(G)≦ g(G□H),且在一些特殊的條件下等號會成立。 第三節則討論到補可簡化圖的測地線數的上界。並且我們定義了2-N-支配,一個2-N-支配集D的定義是任意一個不在集合D裡的頂點v,必有兩個不相鄰的鄰居在集合D裡面,而2-N-支配數則是最小的2-N-支配集的大小。並討論一些測地線數和2-N-支配數的等價關係。 第四節討論到樹形補可簡化圖的測地線數的上界,還設計了一個演算法來求在一個樹形圖上的2-N-支配數。 | zh_TW |
dc.description.abstract | All graphs in this thesis are simple, i.e., finite, undirected, loopless and without multiple edges.
For any two vertices u and v of a graph G, a u-v geodesic is a path of length d(u, v). The set I(u, v) consists of all vertices lying on some u-v geodesic of G.. If S is a subset of V(G), then I(S) is the union of all sets I(u, v) for u and v in S. The geodetic number g(G) is the minimum cardinality among the subset S of V(G) with I(S)=V(G). In section 1, we introduce some definitions, which is used in this thesis. In section 2, we discuss geodetic numbers on Cartesian products of graphs. The main result is g(G) ≦ g(G□H) for any two graphs G and H. And g(G)=g(G□H) for some H with some special condition. In section 3, we discuss an upper bound of geodetic numbers of cographs. A 2-N-dominating set of a graph G is a vertex subset D such that every vertex not in D is adjacent to two distinct non-adjacent vertices in D. Denote by g2(G) the minimum cardinality of a 2-N-dominating set in G. And we discuss the relation between geodetic numbers and 2-N-domination numbers. In section 4, we define tree-cographs and term f-domination. And we design an algorithm to find the 2-N-domination number of a tree-cograph. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T16:43:02Z (GMT). No. of bitstreams: 1 ntu-94-R90221020-1.pdf: 146123 bytes, checksum: d142d47313608b0a390b4d0523379118 (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | 中文摘要……………………………………………………………i
英文摘要……………………………………………………………ii 目錄…………………………………………………………………iii Section 1:Introduction………………………………………1 Section 2:Geodetic numbers of G□H………………………3 Section 3:Geodetic numbers of cographs…………………6 Section 4:Geodetic numbers of tree-cographs…………10 References………………………………………………………14 | |
dc.language.iso | en | |
dc.title | 圖形的測地線數 | zh_TW |
dc.title | Geodetic Numbers of Graphs | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李國偉,陳伯亮 | |
dc.subject.keyword | 測地線數, | zh_TW |
dc.subject.keyword | Geodetic Numbers, | en |
dc.relation.page | 17 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-07-01 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 數學研究所 | zh_TW |
顯示於系所單位: | 數學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 142.7 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。