Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38711
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張鎮華
dc.contributor.authorChaur-Shang Kangen
dc.contributor.author康朝翔zh_TW
dc.date.accessioned2021-06-13T16:43:02Z-
dc.date.available2005-07-26
dc.date.copyright2005-07-26
dc.date.issued2005
dc.date.submitted2005-06-30
dc.identifier.citation[1] M. Atici, Graph operations and geodetic numbers. Proceedings of the Thirtieth
Southeastern International Conference on Combinatorics, Graph Theory, and
Computing (Boca Raton, FL, 1999) 141 (1999), 95{110.
[2] M. Atici, On the edge geodetic number of a graph, Int. J. Comput. Math. 80
(2003), no. 7, 853{861.
[3] G. B. Chae, E. M. Palmer and W. C. Siu, Geodetic number of random graphs
of diameter 2, Australas. J. Combin. 26 (2002), 11{20.
[4] G. Chartrand, F. Harary and P. Zhang, On the geodetic number of a graph,
Networks 39 (2002), 1{6.
[5] G. Chartrand, E. M. Palmer and P. Zhang, The geodetic number of a graph:
a survey, Proceedings of the Thirty-third Southeastern International Conference
on Combinatorics, Graph Theory and Computing (Boca Raton, FL, 2002) 156
(2002), 37{58.
[6] G. Chartrand and P. Zhang, The forcing geodetic number of a graph, Discuss.
Math. Graph Theory 19 (1999), no. 1, 45{58.
[7] G. Chartrand and P. Zhang, The geodetic number of an oriented graph, European
J. Combin 21 (2000), no. 2, 181{189.
[8] A. L. Douthat and M. C. Kong, Computing the geodetic number of bipartite
graphs, Proceedings of the Twenty-sixth Southeastern International Conference
16
on Combinatorics Graph Theory and Computing (Boca Raton, FL, 1995) 107
(1995), 113{119.
[9] F. Harary, E. Loukakis and C. Tsouros The geodetic number of a graph, Graph-
theoretic Models in Computer Science, II (Las Cruces, NM, 1988{1990), Math.
Comput. Modelling 17 (1993), no. 11, 89{95.
[10] P. Zhang, The upper forcing geodetic number of a graph, Ars Combin 62 (2002),
3{15
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38711-
dc.description.abstract本文所討論的圖形均為簡單圖,即頂點個數為有限、邊的兩端點不一樣、邊沒有方向、以及兩個頂點之間最多只有一條邊。
對圖形G裡的任意兩個頂點u和v,集合I(u, v)為包含了u和v,以及所有位於長度為d(u, v)、端點為u和v的路徑上面的所有頂點的集合。如果S是一個頂點的子集合,則I(S)表示所有任意在S裡的兩個點u和v所構成的I(u, v)的聯集。如果I(S)剛好就是所有的頂點的話,我們就稱S為測地線集。而測地線數,g(G),就是最小的測地線集的大小。
在第一節我們介紹一些本論文所用及的定義。
第二節我們將討論圖形迪氏積的測地線數,主要的結果是對任意兩個圖形都有
g(G)≦ g(G□H),且在一些特殊的條件下等號會成立。
第三節則討論到補可簡化圖的測地線數的上界。並且我們定義了2-N-支配,一個2-N-支配集D的定義是任意一個不在集合D裡的頂點v,必有兩個不相鄰的鄰居在集合D裡面,而2-N-支配數則是最小的2-N-支配集的大小。並討論一些測地線數和2-N-支配數的等價關係。
第四節討論到樹形補可簡化圖的測地線數的上界,還設計了一個演算法來求在一個樹形圖上的2-N-支配數。
zh_TW
dc.description.abstractAll graphs in this thesis are simple, i.e., finite, undirected, loopless and without multiple edges.
For any two vertices u and v of a graph G, a u-v geodesic is a path of length d(u, v). The set I(u, v) consists of all vertices lying on some u-v geodesic of G.. If S is a subset of V(G), then I(S) is the union of all sets I(u, v) for u and v in S. The geodetic number g(G) is the minimum cardinality among the subset S of V(G) with I(S)=V(G).
In section 1, we introduce some definitions, which is used in this thesis.
In section 2, we discuss geodetic numbers on Cartesian products of graphs. The main result is g(G) ≦ g(G□H) for any two graphs G and H. And g(G)=g(G□H) for some H with some special condition.
In section 3, we discuss an upper bound of geodetic numbers of cographs. A 2-N-dominating set of a graph G is a vertex subset D such that every vertex not in D is adjacent to two distinct non-adjacent vertices in D. Denote by g2(G) the minimum cardinality of a 2-N-dominating set in G. And we discuss the relation between geodetic numbers and 2-N-domination numbers.
In section 4, we define tree-cographs and term f-domination. And we design an algorithm to find the 2-N-domination number of a tree-cograph.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T16:43:02Z (GMT). No. of bitstreams: 1
ntu-94-R90221020-1.pdf: 146123 bytes, checksum: d142d47313608b0a390b4d0523379118 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents中文摘要……………………………………………………………i
英文摘要……………………………………………………………ii
目錄…………………………………………………………………iii
Section 1:Introduction………………………………………1
Section 2:Geodetic numbers of G□H………………………3
Section 3:Geodetic numbers of cographs…………………6
Section 4:Geodetic numbers of tree-cographs…………10
References………………………………………………………14
dc.language.isoen
dc.title圖形的測地線數zh_TW
dc.titleGeodetic Numbers of Graphsen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李國偉,陳伯亮
dc.subject.keyword測地線數,zh_TW
dc.subject.keywordGeodetic Numbers,en
dc.relation.page17
dc.rights.note有償授權
dc.date.accepted2005-07-01
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  目前未授權公開取用
142.7 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved