請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33376
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 韋文誠(Weng-Cheng Wei) | |
dc.contributor.author | Jia-Ming Sung | en |
dc.contributor.author | 宋佳明 | zh_TW |
dc.date.accessioned | 2021-06-13T04:37:15Z | - |
dc.date.available | 2006-07-21 | |
dc.date.copyright | 2006-07-21 | |
dc.date.issued | 2006 | |
dc.date.submitted | 2006-07-18 | |
dc.identifier.citation | 林頌恩, “氧化銦及銦酸鍶陶瓷顆粒之製備與分析”, 國立台灣大學材料科學與工程研究所碩士論文, (2004)
陳婷瑋, “二氧化矽光閘晶體的製備與分析,” 國立台灣大學材料科學與工程研究所碩士論文, (2002) 盧贊文, 李柏璁, ”光通訊波長二維光子晶體雷射發展簡介”, 物理雙月刊, 廿七卷五期, (2005) Aiken, B., Hsu, W. P., and Matijevic, E., “Preparation and Properties of Monodispersed Colloidal Particles of Lanthanide Compounds: Ⅲ, Yttrium (Ⅲ) and Mixed Yttrium (Ⅲ) / Cerium (Ⅲ) System”, J. Am. Ceram. Soc., 71 [10] 845 (1988) Ashkin, A., “Optical Trapping and Manipulation of Neutral Particles Using Lasers”, Proc. Natl. Acad. Sci. USA, 94, 4853-4860 (1997) Ashkin, A., “Acceleration and Trapping of Particles by Radiation Pressure.”, Phys. Rev. Lett. 24 [4], 156-159 (1970) Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E., and Chu, S., “Observation of a Single-beam Gradient Force Optical Trap for Dielectric Particles”, Optic. Lett., 11 [5], 288-290 (1986) Ashkin, A., Methods in Cell Biology, edited by M. P. Sheetz (Academic Press, San Diego, 1998), Vol. 55, 1-27 Blanco, A., Chomski, E., Grabtchak, S., Ibisate, M., John, S., Leonard, S. W., Lopez, C., Meseguer, F., Miguez, H., Mondia, J. P., Ozin, G. A., Toader, O., and van Driel, H. M., “Large-Scale Synthesis of a Silicon Photonic Crystal with a Complete Three-Dimensional Bandgap Near 1.5 micrometres”, Nature, 405 [25], 437-440 (2000) Boschini, F., Robertz, B., Rulmont, A., and Cloots, R., “Preparation of Nano-sized Barium Zirconate Powder by Thermal Decomposition of Urea in an Aqueous Solution Containing Barium and Zirconium and by Calcination of the Precipitation,” J. Eur. Ceram. Soc., 23, 3035-42 (2003). Chu, S., Bjorkholm, J. E., Ashkin, A., and Cable, A., “Experimental Observation of Optically Trapped Atoms”, Phys. Rev. Lett. 57 [3], 314-316 (1986) Colvin, V. L., From Opals to Optics: Colloidal Photonic Crystals, MRS BULLETIN, 2001. Fox, M., Optical Properties of Solids, First Edition, OXFORD, (2001) Garces-Chavez, McGloin, V., D., Melville, H., Sibbett, W., and Dholakia, K., “Simultaneous Micromanipulationin Multiple Planes Using a Self-reconstructing Light Beam”, Nature, 419 [12], 145-147 (2002) Grier, D. G., “A revolution in optical manipulation,” Nature, 424, 810-816 (2003) Harada, Y., and Asakura, T., “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,“ Opt. Commun., 124, 529 (1996) Hattori, H., “Two-Step Assembly Technique for Preparation of Polymer-Particle Composite Films”, Thin Solid Films, 385, 302-306 (2001) Hayward, R. C., Saville D. A., and Aksay, I. A., “Electrophoretic Assembly of Colloidal Crystals with Optically Tunable Micropatterns”, Nature, 404 [2], 56-59 (2000) Hecht, E., Optics, 4ed Edition, Addition Wesley, (2002) http://ab-initio.mit.edu/photons/tutorial http://britneyspears.ac/physics/fabrication/photolithography.htm http://www.cerac.com/pubs/pubs.htm http://www.phys.umu.se/laser/twestat1.html http://www.polysciences.com/shop/ Hunter, R. J., Foundations of Colloid Science, 2nd Edition, Oxford University Press (2001), Chapter 7-9 Johnson, S. G., and Joannopoulos, J.D., “Designing Synthetic Optical Media: Photonic Crystals”, Acta Mater., 51, 5823–5835 (2003) Kasap, S. O., Optoelectronics and Photonics – Principles and Practices, International Edition, 2001 Kitai, A. H., Solid State Luminescence: Theory, Materials and Devices, First Edition, CHAPAN & HALL, (1993) Krauss, T. F., and De La Rue, R. M., “Photonic Crystals in the Optical Regime - Past, Present and Future”, Pro. Quan. Eleci., 23 51-96 (1999) Kushida, T., and Takushi, E., “Determination of Homogeneous Spectral Widths by Fluorescence line narrowing in Ca(PO3)2:Eu3+”, Phys. Rev. Lett. 12 [3], 824-827 (1975) Leach, J., Sinclair, G., Jordan, P., Courtial, J., and Padgett, M. J., “3D Manipulation of Particles into Crystal Structures Using Holographic Optical Tweezers”, Optic. Exp., 12 [1], 220-226 (2004) Lee, Y. G., “Open Problems in Assembling Microscopic Components by Optical Tweezers”, Department of Mechatronics, GIST, Gwangju, Korea. Lidorikis, E., Povinelli, M. L., Johnson, S.G., and Joannopoulos, J. D., “Polarization-Independent inear Waveguides in 3D Photonic Crystals”, Phys. Rev. Lett., 91 [2], 1-4 (2003) Lin, S. E., and Wei, W. C. J., “Synthesis and Growth Kinetics of Monodispersive Indium Hydrate Particles,” J. Am. Ceram. Soc., 89 [2] 527-533 (2006). Loncar, M., Doll, T., Vuckovic, J., and Scherer, A., “Design and Fabrication of Silicon Photonic Crystal Optical Waveguides”, J. Light. Tech., 18 [10], 1402-1411 (2000) Lumsdon, S. O., and Kaler, E. W., Williams, J. P., and Velev, O. D., “Dielectrophoretic Assembly of Oriented and Switchable Two-Dimensional Photonic Crystals”, Appl. Phys. Lett., 82 [6], 949-951 (2003) MacDonald, M. P., Paterson, L., Sibbett, W., and Dholakia, K., “Trapping and Manipulation of Low-Index Particles in a Two-Dimensional Interferometric Optical Trap,” Opi. Lett., 26, [12], 863-865 (2001) MacDonald, M. P., Paterson, L., Volke-Sepulveda K., Arlt, J., Sibbett, W., and Dholakia, K., “Creation and Manipulation of Three-Dimensional Optically Trapped Structures,” Scence, 296, 1101-1103 (2002) Martinez-Rubio, M. I., Ireland, T. G., Silver, J., Fern, G., Gibbons, C., and Vecht, A., “Effect of EDTA on Controlling Nucleation and Morphology in the Synthesis of Ultrafine Y2O3:Eu3+ Phosphors,” Electrochem. and Solid-State Lett., 3 [9] 446-449 (2000) Matijevic, E., “Preparation and Properties of Uniform Size Colloids”, Chem. Mater., 5, 412-426 (1993) Minami, T., “Oxide Thin-Film Electroluminescent Devices and Materials,” Solid-State Electro., 47, 2237-2243 (2003) Mogensen, P. C., and Gluckstad, J., “ Dynamic array generation and pattern formation for optical tweezers,” Opt. Commun., 175, 75–81 (2000) Molloy, J. E., Dholakia, K., and Padgett, M. J., “Preface: Optical Tweezers in a New Light,” J. Mode. Opt., 50 [10], 1501-1507 (2003) Morrison and Ross, S., Colloidal Dispersions: Suspension, Emulsions, and Foams, Wiley Interscience (2002), Chapter 2 Neto, P. A. M., and Nussenzveig, H. M., “Theory of Optical Tweezers”, Europhys. Lett., 50, 702-708 (2000) Neuman K. C., and Block, S. M., “Review Article: Optical Trapping”, Rev. Sci. Instrum., 75 [9], 2787-2809 (2004) Nieminen, T. A., Rubinsztein-Dunlop, H., Heckenberg, N. R., and Bishop, A. I., “Numerical Modelling of Optical Trapping”, Compu. Phy. Commun., 142, 468-474 (2001) Ogawa, S., Imada, M., Yoshimoto, S., Okano, M., and Noda, S., “Control of Light Emission by 3D Photonic Crystals”, Science, 305 [9], 227-229 (2004) Ozbay, E., Bulu, I., Aydin, K., Caglayan, H., and Guven, K., “Physics and applications of photonic crystals,” Photonics and Nanostructures – Fundamentals and Applications, 2, 87–95 (2004) Painter, O., Lee, R. K., Scherer, A., Yariv, A., OBrien, J. D., Dapkus, P. D., and Kim, I., “Two-Dimensional Photonic Band-Gap Defect Mode Laser”, Science, 284, 1819-1821 (1999) Park, H. G., Kim, S. H., Kwon, S. H., Ju, Y. G., Yang, J. K., Baek, J. H., Kim, S. B., and Lee, Y. H., “Electrically Driven Single-Cell Photonic Crystal Laser”, Science, 305, 1444-1447 (2004) Peterman, E. J. G., Gittes, F., and Schmidt, C. F., “Laser-induced Heating in Optical Traps”, J. Biophy. 84, 1308-1313 (2003) Purcell, E.M., Physical Review, 69 681 (1946) Qi, M., Lidorikis, E., Rakich, P. T., Johnson, S. G., Joannopoulos, J. D., Ippen E. P., and Smith, H. I., “A three-Dimensional Optical Photonic Crystal with Designed Point Defects”, Nature, 429 [3], 538-542 (2004) Reed, J. S., Principles of Ceramic Processing, 2nd Edition, John Wiley & Sons, NY, USA (1995), Chapter 7, 10 Roosen G., and Imbert, C., “Optical Levitation by Means of 2 Horizontal Laser Beams—Theoretical and Experimental Study” Phy. Lett. A, 59, 6-8 (1976) Ropp, R. C., Luminescence and the Solid State, Elsevier Science Publishers B. V., (1991) Rubinov, A. N., Katarkevich, V. M., Afanas, A. A., and Efendiev, T. S., “Interaction of Interference Laser Field with an Ensemble of Particles in Liquid”, Optic. Commu., 224, 97-106 (2003) Russel, W. B., Saville, D. A., and Schowalter, W. R., Colloidal Dispersions, Cambridge University Press (1989), Chapter 3 Shan, Z., Zhang, Y., Zhou, X., and Yao, J., “Analytical Analysis of a Rectangular Shielded Multilayer Coupled Coplanar Waveguide,” Microwave and Opt. Tech. Lett., 41 [5], 392 (2004) Shaw, W. H. R., and Bordeaux, J. J., “The Decomposition of Urea in Aqueous Media,” J. Chem. Soc., 77, 4729 (1955) I. D. Soljacic, M., Luo, C., and Joannopoulos, J. D., “Nonlinear Photonic Crystal Microdevices for Optical Integration”, Opt. Lett., 28 [8], 637-639 (2003) Svoboda K., and Block, S. M., Annu. Rev. Biophys. Biomol. Struct. 23, 247-251 (1994) Terray, A., Oakey, J., and Marr, D. W. M., “Fabrication of Linear Colloidal Structures for Microfluidic Applications” Appl. Phys. Lett., 81, 1555-1557 (2002) Terray, A., Oakey, J., and Marr, D. W. M., “Microfluidic Control Using Colloidal Devices” Science, 296, 1841-1844 (2002) Toader O., and John, S., “Proposed Square Spiral Microfabrication Architecture for Large Three-Dimensional Photonic Band Gap Crystals”, Science, 292, 1133-1135 (2001) Trau, M., Saville, D. A., and Aksay, I. A.,”Field-Induced Layering Colloidal Crystal”, Science, 272, 706-709 (1996) van Blaaderen, A., Ruelt, R., and Wiltzius, P., “Template-Directed Colloidal Crystallization”, Nature, 385 [23], 321-324 (1997) Ven, V. D., Colloidal hydrodynamics, Academic Press (1989), Chapter 2 Vickreva, O., Kalinina, O., and Kumacheva, E., “Colloid Crystal Growth under Oscillatory”, Adv. Mater,. 12, [2] 110-112 (2000) Vlasov, Y. A., Bo, X. Z., Sturm, J. C., and Norris, D. J., “On-chip Natural Assembly of Silicon Photonic Bandgap Crystals”, Nature, 414 [15], 289-293 (2001) Wakefield, B. G., Holland, E., Dobson, P. J., “Luminescence Properties of Nanocrystalline Y2O3:Eu3+,” Adv. Mater., 13 [20], 2001 Withnall, R., Martinez-Rubio, M. I., Fern, G. R., Ireland, T. G., and Silver, J., “Photonic Phosphors Based on Cubic Y2O3:Tb3+ Infilled into a Synthetic Opal Lattice”, J. Opt. A: Pure Appl. Opt. 5, S81–S85 (2003) Xia, Y., Gates, B., and Park, S. H., “Fabrication of Three-Dimensional Photonic Crystal for Use in the Spectral from Ultraviolet to Near-Infrared.” J. Light. Tech., 17 [11], 1956-1962 (1999) Yablonovitch E., and Gbitter, T. J., “Donor and Acceptor Modes in Photonic Band Structure”, Phys. Rev. Lett., 67 [24], 3380-3383 (1991) Yablonovitch, E., “Inhibited Spontaneous Emission in Solid-State Physics and Electronics”, Phys. Rev. Lett., 58 [20], 2059-2062 (1987) Yablonovitch, E., “Photonic Crystal: Semiconductor of Light”, Science Amer., 47-55 (2001) Yablonovith, E., Fmitter, T. J., and Leung, K. M., “Photonic Band Structure: The Face Centered Cubic Case Employing Nonspherical Atoms”, Phys. Rev. Lett., 67 2295-2298 (1991) Yin, Y., Li, Z. Y., and Xia, Y., “Template-Directed Growth of (100)-Oriented Colloidal Crystals”, Langmuir, 19, 622-631 (2003) | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33376 | - |
dc.description.abstract | 光閘晶體(Photonic BandGap Crystal)是一種晶體材料在空間中具有介電性週期變化的特殊結構,若在結構內加入特定圖譜(或稱缺陷)後,其光電性質將更為豐富,有取代電路的可能,未來可成為有更大傳輸量、更低訊號損失率及安全性較佳之積體光路(Integrated Optical Circuit)。然而在製作特定缺陷結構的製程中,採用傳統成熟的光微影法(Photolithography)雖然可以輕易的在二維結構中加入不同型態的圖譜,但是卻很難應用到三維的狀況。本研究的目的在於利用膠體自組裝法(Colloidal Self-assembly),搭配雷射繞射(Laser Diffraction),來控制膠粒的沉降堆積行為,進而製作具有圖譜的光閘晶體。
首先,在實驗中除了使用聚苯乙烯及二氧化矽之外,另外合成單一粒徑、次微米球形發光氧化釔摻鋱(Y2O3:Tb3+),且利用XRD、SEM、TEM、TGA、ICP-OES、以及PL等分析技術去分析合成顆粒的結構、組成、發光性質。結果顯示球形氧化釔摻鋱在合成過程中屬零級反應,受反應過程中所添加的尿素分解所控制;並且在受紫外光(UV)光激發下,可觀察到主峰波長546 nm的綠光放射光譜。 在本研究的第二個目標為比較顆粒在溶液中組合時各種作用力的相對影響。實驗利用一光學顯微鏡系統(OM)觀察錄影後,統計分析其在單一或是多重作用力影響下的行為。結果顯示,在無外加作用力下,次微米顆粒的行為主要是受到布朗運動所控制,而非重力;然而在有外加電場作用力下,布朗運動的影響幾乎可以被乎略。此外,另一作用力來自雷射光,在形成一高度聚焦後的光鉗(Optical Tweezer)後,使之與溶液中的顆粒作用。在OM的觀察下顯示,此光鉗一次可以鉗住很多顆粒,而且在雷射光透過一設計的圖譜後,溶液中的顆粒可以很明顯的受該繞射圖譜的影響,而排列成相同的樣式。 | zh_TW |
dc.description.provenance | Made available in DSpace on 2021-06-13T04:37:15Z (GMT). No. of bitstreams: 1 ntu-95-R93527029-1.pdf: 10372373 bytes, checksum: 63f66e5aaa99b0b407448011a3894092 (MD5) Previous issue date: 2006 | en |
dc.description.tableofcontents | 摘要 I
Abstract III Content V List of Figures IX List of Tables XIII Chapter 1 Introduction 1 Chapter 2 Literatures Review 3 2-1 Photonic Bandgap Crystal 3 2-1-1 Brief History and Basic Concept of PBG Crystal 3 2-1-2 Fabrication methods 8 2-1-3 Applications of PBG crystal 14 2-1-4 Imperfection of PBG Crystal 18 2-2 Synthesis of monodispersive Y2O3:Tb3+ spherical phosphor 19 2-2-1 Introduction of Phosphor 19 2-2-2 Yttria-related Phosphors 22 2-2-3 Fabrication Methods 25 2-2-4 Homogenous Precipitation 26 2-3 Analysis of the colloidal particles in solution 27 2-3-1 Colloidal Dispersion Stability 27 2-3-2 Brownian Motion 31 2-3-3 Behavior of Colloidal Particles under External Field Force 42 2-4 Optical Tweezer 45 2-4-1 Introduction of Optical Tweezer 45 2-4-2 Theory of Optical Tweezer 51 2-4-3 Design Consideration 56 Chapter 3 Experimental Procedure 60 3-1 Synthesis of monodispersive Y2O3:Tb3+ spherical phosphor 60 3-1-1 Materials 60 3-1-2 Sample Preparation 60 3-1-3 Characterization Technique 61 3-2 Analysis of the colloidal particles in the solution 66 3-2-1 Real-time Observation 66 3-2-2 Statistic Analysis of Brownian motion 68 3-2-3 Statistic Analysis under External Field Force 72 3-3 Optical Tweezer 74 3-3-1 Optical Tweezer System 74 3-3-2 Designed Pattern 75 3-3-3 Alignment 79 3-4 Fabrication of Photonic Bandgap Crystal 81 3-4-1 Materials 81 3-4-2 Procedure for fabricating of PBG crystal with designed pattern 81 Chapter 4 Results and Discussion 87 4-1 Synthesis of monodispersive Y2O3:Tb3+ spherical phosphor 87 4-1-1 Hydration Reactions 87 4-1-2 Precipitation Kinetics 89 4-1-3 Microstructural Observation 95 4-1-4 Dispersive Properties 103 4-1-5 PL Properties 103 4-2 Behavior of Particles 107 4-2-1 Effect of Sampling Interval 115 4-2-2 Optical trapping of Particle 115 4-2-3 Estimatation of External Field Force 121 4-3 Assembly of Photonic Bandgap Crystal 129 4-3-1 Natural Sedimentation under Different Zeta-potential 129 4-3-2 Natural Sedimentation with Existence of Patterned Laser Beam 129 Chapter 5 Conclusions 137 Chapter 6 Future Work 139 References 140 | |
dc.language.iso | en | |
dc.title | 利用雷射繞射法製備具有特定圖譜光閘晶體之研究與分析 | zh_TW |
dc.title | Fabrication and Characterization of Photonic BandGap Crystal with Designed Pattern by Laser Diffraction Method | en |
dc.type | Thesis | |
dc.date.schoolyear | 94-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳俊杉(Chuin-Shan Chen),劉如熹(Ru-Shi Liu),林清富(Chin-Fu Lin) | |
dc.subject.keyword | 光閘晶體,雷射繞射法,氧化釔摻鋱,反應動力學,布朗運動,光鉗, | zh_TW |
dc.subject.keyword | PBG crystal,laser diffraction,Y2O3:Tb3+,reaction kinetics,Brownian motion,optical tweezer, | en |
dc.relation.page | 143 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2006-07-19 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-95-1.pdf 目前未授權公開取用 | 10.13 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。