Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22073
Title: 乳房斷層掃描之電腦輔助腫瘤診斷
Computer-aided Tumor Diagnosis of Breast Tomosynthesis
Authors: Chien-Huan Yu
余鑑桓
Advisor: 張瑞峰
Keyword: 乳癌,二元邏輯回歸,電腦輔助診斷,Gabor小波轉換,灰階共生矩陣,ranklet轉換,乳房斷層攝影,乳房X光影像,
breast cancer,binary logistic regression,computer-aided diagnosis (CADx),Gabor,grey level co-occurrence matrix (GLCM),ranklet,tomosynthesis,mammogram,
Publication Year : 2018
Degree: 碩士
Abstract: 對於全球女性來說,乳癌已經成為最普遍的癌症之一,同時也是癌症致死的主要原因,早期偵測可以提供更好的治療並大幅降低死亡率。早期乳癌篩檢以乳房X光攝影為主要檢查工具,近年發展新型態的乳房斷層攝影是一項三維斷層技術,有助於解決二維乳房X光影像產生的組織重疊問題。因此我們提出一個電腦輔助診斷系統,應用在乳房X光影像以及乳房斷層攝影,並比較它們的效能。電腦輔助診斷系統由二元邏輯回歸分類器建立,從乳房X光影像的ROI或乳房斷層攝影的VOI提取紋理特徵,包含灰階共生矩陣、ranklet轉換、以及Gabor小波轉換。並評估不同特徵組合的效能。電腦輔助診斷系統經由42個良性和82個惡性的腫瘤的資料庫進行驗證。由Gabor小波轉換應用在乳房斷層攝影達成最佳的效能。準確率85.48% (106/124),靈敏性86.59% (71/82),特異性83.33% (35/42),以及ROC曲線面積0.8712。總結來說,乳房斷層攝影搭配Gabor小波轉換特徵相較於乳房X光影像的分類效果更好。
Among female throughout the world, breast cancer has become one of the most common carcinomas and the leading cause of cancer-related death. Early detection can provide a better treatment and significantly reduce mortality. Currently, the most effective tool to diagnose breast cancer is mammography screening. Tomosynthesis as a three dimensional (3-D) tomographic technique can overcome the overlapping problem from superimposed tissues of two dimensional (2-D) mammography. Therefore, we proposed a computer-aided diagnosis (CADx) system implemented in tomosynthesis and also in mammography to compare their performance. The CADx system was built by binary logistic regression classifier. Texture features, including gray-level co-occurrence matrix (GLCM), ranklet, and Gabor, were extracted from user-specified regions of interest (ROIs) in mammograms or volumes of interest (VOIs) in tomosynthesis images. The performance of different combinations of features were evaluated. The CADx system was tested with a dataset of 42 benign and 82 malignant tumors. The best performance was achieved by applying Gabor feature in tomosynthesis with an accuracy of 85.48% (106/124), a sensitivity of 86.59% (71/82), a specificity of 83.33% (35/42), and an Az value of 0.8712. To summarize, tomosynthesis is more effective in classification of breast tumor with Gabor feature than mammography.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/22073
DOI: 10.6342/NTU201802712
Fulltext Rights: 未授權
Appears in Collections:資訊工程學系

Files in This Item:
File SizeFormat 
ntu-107-1.pdf
  Restricted Access
1.65 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved