Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 統計與數據科學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98439
Title: 利用混合模型決定錨變數
Determination of anchor variable using mixture model
Authors: 江柏勳
Bo-Xun Jiang
Advisor: 楊鈞澔
Chun-Hao Yang
Keyword: 分布轉移,分布穩健性,錨回歸,混合t分布模型,
Distribution shift,Distributional robustness,Anchor regression,mixture of t distributions,
Publication Year : 2025
Degree: 碩士
Abstract: 在機器學習中,我們常假設測試資料的分布與訓練資料相同。然而,當訓練分布與測試分布之間發生分布轉移(distribution shift)時,模型的預測效能可能會下降。為了解決這個問題,有一種稱為「Anchor Regression」的方法被提出,並在某些情境中展現出處理分布轉移的能力。在應用此方法時,需指定一個anchor變數,用以捕捉不同資料集之間的異質性。然而,在實務上辨識出資料集間真正潛在的差異並不總是可行的。因此,本文提出了一些用於決定anchor變數的潛在方法。這些方法主要利用非監督式學習技術以萃取具意義的特徵,並透過模擬與實際資料集進行評估,以檢驗其有效性。
In machine learning, we often assume that the testing distribution is the same as the training distribution. However, when a distribution shift occurs between the training and testing distributions, the model’s predictive performance may decline. To address this issue, a method called Anchor Regression has been proposed, demonstrating its ability to handle distribution shifts in certain scenarios. When applying this method, it is essential to specify an anchor variable, which captures the heterogeneity across different datasets. However, identifying the true underlying differences between datasets is not always feasible. Therefore, this paper proposes potential methods for determining the anchor variable. These approaches primarily leverage unsupervised learning techniques to extract meaningful features, followed by evaluations through simulations and real datasets to assess their effectiveness.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98439
DOI: 10.6342/NTU202502723
Fulltext Rights: 未授權
metadata.dc.date.embargo-lift: N/A
Appears in Collections:統計與數據科學研究所

Files in This Item:
File SizeFormat 
ntu-113-2.pdf
  Restricted Access
4.51 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved