Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 統計與數據科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98439
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊鈞澔zh_TW
dc.contributor.advisorChun-Hao Yangen
dc.contributor.author江柏勳zh_TW
dc.contributor.authorBo-Xun Jiangen
dc.date.accessioned2025-08-14T16:07:24Z-
dc.date.available2025-08-15-
dc.date.copyright2025-08-14-
dc.date.issued2025-
dc.date.submitted2025-07-31-
dc.identifier.citationCortez, Paulo, C. A. A. F. M. T. and Reis, J. (2009). Wine Quality. UCI Machine Learning Repository. DOI: https://doi.org/10.24432/C56S3T.
Fanaee-T, H. (2013). Bike Sharing. UCI Machine Learning Repository. DOI: https:// doi.org/10.24432/C5W894.
Hastie, T. (2009). The elements of statistical learning: data mining, inference, and prediction.
Lin, F., Fang, X., and Gao, Z. (2022). Distributionally robust optimization: A review on theory and applications. Numerical Algebra, Control and Optimization, 12(1):159–212.
Murphy, K. P. (2007). Conjugate bayesian analysis of the gaussian distribution. def, 1:16.
Pearl, J. (2009). Causality. Cambridge university press.
Peel, D. and McLachlan, G. J. (2000). Robust mixture modelling using the t distribution. Statistics and Computing, 10(4):339–348.
Rothenhäusler, D., Meinshausen, N., Bühlmann, P., and Peters, J. (2021). Anchor regression: Heterogeneous data meet causality. In Journal of the Royal Statistical Society Series B, volume 83, pages 215–246. Royal Statistical Society, New York.
Sagawa, S., Koh, P. W., Hashimoto, T. B., and Liang, P. (2019). Distributionally robust neural networks for group shifts: On the importance of regularization for worst-case generalization. arXiv preprint arXiv:1911.08731.
Schneider, N., Goshtasbpour, S., and Perez-Cruz, F. (2023). Anchor data augmentation. Advances in Neural Information Processing Systems, 36:74890–74902.
Shi, W. and Xu, W. (2022). Nonlinear causal discovery via kernel anchor regression. arXiv preprint arXiv:2210.16775.
Yao, H., Wang, Y., Zhang, L., Zou, J. Y., and Finn, C. (2022). C-mixup: Improving generalization in regression. Advances in neural information processing systems, 35:3361–3376.
Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz, D. (2017). mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98439-
dc.description.abstract在機器學習中,我們常假設測試資料的分布與訓練資料相同。然而,當訓練分布與測試分布之間發生分布轉移(distribution shift)時,模型的預測效能可能會下降。為了解決這個問題,有一種稱為「Anchor Regression」的方法被提出,並在某些情境中展現出處理分布轉移的能力。在應用此方法時,需指定一個anchor變數,用以捕捉不同資料集之間的異質性。然而,在實務上辨識出資料集間真正潛在的差異並不總是可行的。因此,本文提出了一些用於決定anchor變數的潛在方法。這些方法主要利用非監督式學習技術以萃取具意義的特徵,並透過模擬與實際資料集進行評估,以檢驗其有效性。zh_TW
dc.description.abstractIn machine learning, we often assume that the testing distribution is the same as the training distribution. However, when a distribution shift occurs between the training and testing distributions, the model’s predictive performance may decline. To address this issue, a method called Anchor Regression has been proposed, demonstrating its ability to handle distribution shifts in certain scenarios. When applying this method, it is essential to specify an anchor variable, which captures the heterogeneity across different datasets. However, identifying the true underlying differences between datasets is not always feasible. Therefore, this paper proposes potential methods for determining the anchor variable. These approaches primarily leverage unsupervised learning techniques to extract meaningful features, followed by evaluations through simulations and real datasets to assess their effectiveness.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-14T16:07:24Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-14T16:07:24Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements i
摘要 iii
Abstract v
Contents vii
Chapter 1 Introduction 1
Chapter 2 Preliminaries 5
2.1 Anchor Regression 5
2.1.1 Choice about Anchor Variable 7
2.2 Mixture Models 8
2.2.1 Gaussian Mixture Model 8
2.2.2 Mixture of t Distributions 9
Chapter 3 Methodology 11
3.1 Linear SEM and Gaussian Mixture Model 11
3.2 Univariate Case 13
3.3 Multivariate Case 18
Chapter 4 Simulation 21
4.1 Data Generating Process 21
4.1.1 Univariate Case 21
4.1.2 Multivariate case 25
4.2 Criterion of Choosing Prior 28
4.3 Simulation Results 29
4.3.1 Univariate Case 29
4.3.2 Multivariate Case 30
Chapter 5 Real Data Example 35
5.1 Bike-sharing dataset 35
5.2 Wine quality dataset 39
Chapter 6 Conclusion 41
References 43
Appendix A — Derivation 45
-
dc.language.isoen-
dc.subject分布穩健性zh_TW
dc.subject分布轉移zh_TW
dc.subject混合t分布模型zh_TW
dc.subject錨回歸zh_TW
dc.subjectDistribution shiften
dc.subjectmixture of t distributionsen
dc.subjectDistributional robustnessen
dc.subjectAnchor regressionen
dc.title利用混合模型決定錨變數zh_TW
dc.titleDetermination of anchor variable using mixture modelen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林書勤;張志浩zh_TW
dc.contributor.oralexamcommitteeShu-Chin Lin;Chih-Hao Changen
dc.subject.keyword分布轉移,分布穩健性,錨回歸,混合t分布模型,zh_TW
dc.subject.keywordDistribution shift,Distributional robustness,Anchor regression,mixture of t distributions,en
dc.relation.page46-
dc.identifier.doi10.6342/NTU202502723-
dc.rights.note未授權-
dc.date.accepted2025-08-01-
dc.contributor.author-college理學院-
dc.contributor.author-dept統計與數據科學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:統計與數據科學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
4.51 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved