Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 會計學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97909
Title: ESG文本具有財務資訊性嗎?大型語言模型摘要與情緒的角色探討
Are ESG Narratives Financially Informative?The Role of LLM Summaries and Sentiment
Authors: 詹雅婷
Ya-Ting Jhan
Advisor: 謝昇峯
Sheng-Feng Hsieh
Keyword: ESG揭露,大型語言模型,情緒分析,財務表現,文字摘要,
ESG disclosure,large language models (LLMs),sentiment analysis,financial performance,text summarization,
Publication Year : 2025
Degree: 碩士
Abstract: 本研究旨在探討企業永續報告書中關於環境、社會與公司治理(ESG)揭露內容是否具有財務資訊價值,並進一步分析大型語言模型(Large Language Models, LLMs)所生成之摘要文本與其所包含之情緒對企業財務績效與市場評價的影響。本文蒐集2010年至2024年間標準普爾500指數(S&P 500)中非金融類企業之ESG報告書,運用Gemini 1.5 Flash模型進行報告摘要生成,並透過FinBERT模型進行情緒分析。實證結果顯示,相較於原始報告書文本所萃取之情緒,LLM生成摘要中所反映之情緒與企業當期與次期資產報酬率(ROA),以及次期Tobin’s Q,皆呈現顯著正向關聯,顯示LLM摘要具備更高之資訊性與預測性。此外,傳統機構提供之ESG評等在本研究中未能展現顯著解釋力。綜合而言,本文證實大型語言模型可有效濃縮冗長的永續揭露內容,提升其可讀性與財務相關性,為資本市場參與者提供具決策意義之永續資訊,並為ESG文本分析提供嶄新的研究視角與方法論貢獻。
This study examines whether the narrative content of Environmental, Social, and Governance (ESG) reports contains financially informative signals, and further investigates the role of summary sentiment generated by Large Language Models (LLMs) in relation to firm performance and valuation. Utilizing a sample of ESG reports from non-financial firms listed on the S&P 500 between 2010 and 2024, we apply the Gemini 1.5 Flash model to generate concise summaries, followed by sentiment analysis using the FinBERT model. Empirical results reveal that, compared to sentiments derived from full-length ESG texts, sentiments extracted from LLM-generated summaries exhibit a significantly positive association with both contemporaneous and subsequent return on assets (ROA), as well as future Tobin’s Q. These findings suggest that LLM summaries enhance the informativeness and predictive power of ESG disclosures. In contrast, institutional ESG ratings do not demonstrate significant explanatory power in the same models. Overall, this study highlights the potential of LLMs to distill value-relevant content from lengthy ESG narratives, improve information processing efficiency, and enhance the decision-usefulness of sustainability disclosures. The findings contribute to the growing literature on AI-assisted financial text analysis and offer a novel methodological approach to ESG research.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97909
DOI: 10.6342/NTU202501836
Fulltext Rights: 同意授權(限校園內公開)
metadata.dc.date.embargo-lift: 2026-08-31
Appears in Collections:會計學系

Files in This Item:
File SizeFormat 
ntu-113-2.pdf
  Restricted Access
1.29 MBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved