Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 會計學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97909
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝昇峯zh_TW
dc.contributor.advisorSheng-Feng Hsiehen
dc.contributor.author詹雅婷zh_TW
dc.contributor.authorYa-Ting Jhanen
dc.date.accessioned2025-07-22T16:09:59Z-
dc.date.available2025-07-23-
dc.date.copyright2025-07-22-
dc.date.issued2025-
dc.date.submitted2025-07-15-
dc.identifier.citationAlareeni, B. A., and Hamdan, A. (2020). ESG impact on performance of US S&P 500-listed firms. Corporate Governance: The International Journal of Business in Society, 20(7), 1409-1428. https://doi.org/10.1108/cg-06-2020-0258.
Albitar, K., Abdoush, T., and Hussainey, K. (2022). Do corporate governance mechanisms and ESG disclosure drive CSR narrative tones? International Journal of Finance and Economics, 28(4), 3876-3890. https://doi.org/10.1002/ijfe.2625.
Albuquerque, F., and Gomes Dos Santos, P. (2024). Exploring ChatGPT’s capabilities in solving accounting standards problems: the case of IAS 37. Cogent Education, 11(1). https://doi.org/10.1080/2331186x.2024.2412492.
Alfalih, A. A. (2022). ESG disclosure practices and financial performance: a general and sector analysis of SP-500 non-financial companies and the moderating effect of economic conditions. Journal of Sustainable Finance and Investment, 13(4), 1506-1533. https://doi.org/10.1080/20430795.2022.2150511.
Ananya Hadadi, R., Pradip Kumar, B., and Arindam, M. (2023). CEO Communications and ESG Performance: Deciphering the Impact of Corporate Narratives. International Journal of Business and Economics, 8(2), 190-211. https://doi.org/10.58885/ijbe.v08i2.190.ar.
Behl, A., Kumari, P. S. R., Makhija, H., and Sharma, D. (2021). Exploring the relationship of ESG score and firm value using cross-lagged panel analyses: case of the Indian energy sector. Annals of Operations Research, 313(1), 231-256. https://doi.org/10.1007/s10479-021-04189-8.
Blankespoor, E. (2019). The Impact of Information Processing Costs on Firm Disclosure Choice: Evidence from the XBRL Mandate. Journal of Accounting Research, 57(4), 919-967. https://doi.org/10.1111/1475-679x.12268.
Brooks, C., and Oikonomou, I. (2018). The effects of environmental, social and governance disclosures and performance on firm value: A review of the literature in accounting and finance. The British Accounting Review, 50(1), 1-15. https://doi.org/10.1016/j.bar.2017.11.005.
Chatterji, A. K., Durand, R., Levine, D. I., and Touboul, S. (2015). Do ratings of firms converge? Implications for managers, investors and strategy researchers. Strategic Management Journal, 37(8), 1597-1614. https://doi.org/10.1002/smj.2407.
Chen, S., Song, Y., and Gao, P. (2023). Environmental, social, and governance (ESG) performance and financial outcomes: Analyzing the impact of ESG on financial performance. Journal of Environmental Management, 345, 118829. https://doi.org/https://doi.org/10.1016/j.jenvman.2023.118829.
Chen, Z., and Xie, G. (2022). ESG disclosure and financial performance: Moderating role of ESG investors. International Review of Financial Analysis, 83, 102291. https://doi.org/https://doi.org/10.1016/j.irfa.2022.102291.
Cheng, S., and Huang, S. (2024). ESG combined score effects on stock performance of S&P 500-listed firms. Finance Research Letters, 66, 105686. https://doi.org/https://doi.org/10.1016/j.frl.2024.105686.
Del Gesso, C., and Lodhi, R. N. (2024). Theories underlying environmental, social and governance (ESG) disclosure: a systematic review of accounting studies. Journal of Accounting Literature, 47(2), 433-461. https://doi.org/10.1108/jal-08-2023-0143.
Dong, M. M., Stratopoulos, T. C., and Wang, V. X. (2024). A scoping review of ChatGPT research in accounting and finance. International Journal of Accounting Information Systems, 55, 100715. https://doi.org/https://doi.org/10.1016/j.accinf.2024.100715.
Eulerich, M., Sanatizadeh, A., Vakilzadeh, H., and Wood, D. A. (2024). Is it all hype? ChatGPT’s performance and disruptive potential in the accounting and auditing industries. Review of Accounting Studies, 29(3), 2318-2349. https://doi.org/10.1007/s11142-024-09833-9.
Feng, C., and Kim, C. (2021). Information Processing Costs and Firms' Investment Efficiency: An Examination of Channels of the XBRL Effect. Journal of Information Systems, 35(3), 53-75. https://doi.org/10.2308/ISYS-2020-077.
Gu, H., Schreyer, M., Moffitt, K., and Vasarhelyi, M. (2024). Artificial intelligence co-piloted auditing. International Journal of Accounting Information Systems, 54, 100698. https://doi.org/https://doi.org/10.1016/j.accinf.2024.100698.
Han, J.-J., Kim, H. J., and Yu, J. (2016). Empirical study on relationship between corporate social responsibility and financial performance in Korea. Asian Journal of Sustainability and Social Responsibility, 1(1), 61-76. https://doi.org/10.1186/s41180-016-0002-3.
Hirshleifer, D., Lim, S. S., and Teoh, S. H. (2011). Limited Investor Attention and Stock Market Misreactions to Accounting Information. Review of Asset Pricing Studies, 1(1), 35-73. https://doi.org/10.1093/rapstu/rar002.
Huang, A. H., Wang, H., and Yang, Y. (2023). FinBERT: A Large Language Model for Extracting Information from Financial Text*. Contemporary Accounting Research, 40(2), 806-841. https://doi.org/10.1111/1911-3846.12832.
Hutto, C., and Gilbert, E. (2014). VADER: A Parsimonious Rule-Based Model for Sentiment Analysis of Social Media Text. Proceedings of the International AAAI Conference on Web and Social Media, 8(1), 216-225. https://doi.org/10.1609/icwsm.v8i1.14550.
Jensen, M. C., and Meckling, W. H. (1979). Theory of the Firm: Managerial Behavior, Agency Costs, and Ownership Structure. In K. Brunner (Ed.), Economics Social Institutions: Insights from the Conferences on Analysis and Ideology (pp. 163-231). Springer Netherlands. https://doi.org/10.1007/978-94-009-9257-3_8.
Jung, Y. L., and Yoo, H. S. (2023). Environmental, social, and governance activities and firm performance: Global evidence and the moderating effect of market competition. Corporate Social Responsibility and Environmental Management, 30(6), 2830-2839. https://doi.org/10.1002/csr.2518.
Kim, A., Muhn, M., and Nikolaev, V. (2024). Financial statement analysis with large language models. Working Paper. https://arxiv.org/abs/2407.17866.
Kim, A., Muhn, M., and Nikolaev, V. (2025). Bloated disclosures: Can ChatGPT help investors process information? Working Paper. https://doi.org/10.48550/arXiv.2306.10224.
Malik, N., and Kashiramka, S. (2024). “Impact of ESG disclosure on firm performance and cost of debt: Empirical evidence from India”. Journal of Cleaner Production, 448, 141582. https://doi.org/10.1016/j.jclepro.2024.141582.
Melloni, G., Caglio, A., and Perego, P. (2017). Saying more with less? Disclosure conciseness, completeness and balance in Integrated Reports. Journal of Accounting and Public Policy, 36(3), 220-238. https://doi.org/10.1016/j.jaccpubpol.2017.03.001.
Merkl-Davies, D. M., and Brennan, N. M. (2011). A conceptual framework of impression management: new insights from psychology, sociology and critical perspectives. Accounting and Business Research, 41(5), 415-437. https://doi.org/10.1080/00014788.2011.574222.
Mervelskemper, L., and Streit, D. (2016). Enhancing Market Valuation of ESG Performance: Is Integrated Reporting Keeping its Promise? Business Strategy and the Environment, 26(4), 536-549. https://doi.org/10.1002/bse.1935.
Modigliani, F., and Miller, M. H. (1958). The Cost of Capital, Corporation Finance and the Theory of Investment. The American Economic Review, 48(3), 261-297. http://www.jstor.org/stable/1809766.
Narula, R., Rao, P., Kumar, S., and Matta, R. (2024). ESG scores and firm performance- evidence from emerging market. International Review of Economics and Finance, 89, 1170-1184. https://doi.org/10.1016/j.iref.2023.08.024.
Park, S. R., and Oh, K. S. (2022). Integration of ESG Information Into Individual Investors' Corporate Investment Decisions: Utilizing the UTAUT Framework. Front Psychol, 13, 899480. https://doi.org/10.3389/fpsyg.2022.899480.
Parmar, B. L., Freeman, R. E., Harrison, J. S., Wicks, A. C., Purnell, L., and de Colle, S. (2010). Stakeholder Theory:The State of the Art. The Academy of Management Annals, 4(1), 403-445. https://doi.org/10.5465/19416520.2010.495581.
Pennington, R. R., and Kelton, A. S. (2016). How much is enough? An investigation of nonprofessional investors information search and stopping rule use. International Journal of Accounting Information Systems, 21, 47-62. https://doi.org/10.1016/j.accinf.2016.04.003.
REFINITIV. (2021). Environmental, Social and Governance Scores From Refinitiv.
Ruan, L., Li, J., and Huang, S. (2024). News or noise? ESG disclosure and stock price synchronicity. International Review of Financial Analysis, 95, 103483. https://doi.org/https://doi.org/10.1016/j.irfa.2024.103483.
Serafeim, G., and Yoon, A. (2022). Stock price reactions to ESG news: the role of ESG ratings and disagreement. Review of Accounting Studies, 28(3), 1500-1530. https://doi.org/10.1007/s11142-022-09675-3.
Spence, M. (1973). Job Market Signaling. The Quarterly Journal of Economics, 87(3). https://doi.org/10.2307/1882010.
Suchman, M. C. (1995). Managing Legitimacy: Strategic and Institutional Approaches. The Academy of Management Review, 20(3). https://doi.org/10.2307/258788.
Unger, C. L. S. (2000). Speech by SEC Commissioner: Rethinking Disclosure in the Information Age: Can There Be Too Much of a Good Thing? http://www.sec.gov/news/speech/spch387.htm.
Weber, O. (2013). Environmental, Social and Governance Reporting in China. Business Strategy and the Environment, 23(5), 303-317. https://doi.org/10.1002/bse.1785.
Wood, D. A., Achhpilia, M. P., Adams, M. T., Aghazadeh, S., Akinyele, K., Akpan, M., Allee, K. D., Allen, A. M., Almer, E. D., Ames, D., Arity, V., Barr-Pulliam, D., Basoglu, K. A., Belnap, A., Bentley, J. W., Berg, T., Berglund, N. R., Berry, E., Bhandari, A.,…Zoet, E. (2023). The ChatGPT Artificial Intelligence Chatbot: How Well Does It Answer Accounting Assessment Questions? Issues in Accounting Education, 38(4), 81-108. https://doi.org/10.2308/issues-2023-013.
Wu, Z., Gao, J., Luo, C., Xu, H., and Shi, G. (2024). How does boardroom diversity influence the relationship between ESG and firm financial performance? International Review of Economics and Finance, 89, 713-730. https://doi.org/10.1016/j.iref.2023.10.045.
Yu, Z., Farooq, U., Alam, M. M., and Dai, J. (2024). How does environmental, social, and governance (ESG) performance determine investment mix? New empirical evidence from BRICS. Borsa Istanbul Review, 24(3), 520-529. https://doi.org/10.1016/j.bir.2024.02.007.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97909-
dc.description.abstract本研究旨在探討企業永續報告書中關於環境、社會與公司治理(ESG)揭露內容是否具有財務資訊價值,並進一步分析大型語言模型(Large Language Models, LLMs)所生成之摘要文本與其所包含之情緒對企業財務績效與市場評價的影響。本文蒐集2010年至2024年間標準普爾500指數(S&P 500)中非金融類企業之ESG報告書,運用Gemini 1.5 Flash模型進行報告摘要生成,並透過FinBERT模型進行情緒分析。實證結果顯示,相較於原始報告書文本所萃取之情緒,LLM生成摘要中所反映之情緒與企業當期與次期資產報酬率(ROA),以及次期Tobin’s Q,皆呈現顯著正向關聯,顯示LLM摘要具備更高之資訊性與預測性。此外,傳統機構提供之ESG評等在本研究中未能展現顯著解釋力。綜合而言,本文證實大型語言模型可有效濃縮冗長的永續揭露內容,提升其可讀性與財務相關性,為資本市場參與者提供具決策意義之永續資訊,並為ESG文本分析提供嶄新的研究視角與方法論貢獻。zh_TW
dc.description.abstractThis study examines whether the narrative content of Environmental, Social, and Governance (ESG) reports contains financially informative signals, and further investigates the role of summary sentiment generated by Large Language Models (LLMs) in relation to firm performance and valuation. Utilizing a sample of ESG reports from non-financial firms listed on the S&P 500 between 2010 and 2024, we apply the Gemini 1.5 Flash model to generate concise summaries, followed by sentiment analysis using the FinBERT model. Empirical results reveal that, compared to sentiments derived from full-length ESG texts, sentiments extracted from LLM-generated summaries exhibit a significantly positive association with both contemporaneous and subsequent return on assets (ROA), as well as future Tobin’s Q. These findings suggest that LLM summaries enhance the informativeness and predictive power of ESG disclosures. In contrast, institutional ESG ratings do not demonstrate significant explanatory power in the same models. Overall, this study highlights the potential of LLMs to distill value-relevant content from lengthy ESG narratives, improve information processing efficiency, and enhance the decision-usefulness of sustainability disclosures. The findings contribute to the growing literature on AI-assisted financial text analysis and offer a novel methodological approach to ESG research.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-22T16:09:58Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-22T16:09:59Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 i
ABSTRACT ii
CONTENTS iii
LIST OF FIGURES v
LIST OF TABLES vi
1. INTRODUCTION 1
2. LITERATURE REVIEW and HYPOTHESIS DEVELOPMENT 4
2.1 Information Processing Costs and Sentiment Management of ESG Reports 4
2.2 Advances in LLM Applications 7
2.3 The Association between ESG and Financial Performance 8
2.4 The Association between ESG and Company Valuation 11
3. RESEARCH DESIGN 12
3.1 Sample and Data 12
3.2 ESG Report Sentiment Score 14
3.3 Empirical Models 17
4. RESULTS 21
4.1 Analysis of Summarized Content 21
4.2 Descriptive Statistics 24
4.3 Empirical Results 27
4.3.1 ESG Sentiments and Current Financial Performance 27
4.3.2 ESG Sentiments and Subsequent Financial Performance 28
4.3.3 ESG Sentiments and Subsequent Company Valuation 29
5. ADDITIONAL ANALYSES 30
5.1 ESG Subcategories 30
5.2 Alternative Sentiment Measurement Model - VADER 33
6. CONCLUSIONS 35
References 39
Appendix A Variable Definitions 43
Appendix B Empirical Case - Compare Raw ESG Report and LLM-summarized Narratives 44
-
dc.language.isoen-
dc.subjectESG揭露zh_TW
dc.subject文字摘要zh_TW
dc.subject財務表現zh_TW
dc.subject情緒分析zh_TW
dc.subject大型語言模型zh_TW
dc.subjectESG揭露zh_TW
dc.subject文字摘要zh_TW
dc.subject財務表現zh_TW
dc.subject情緒分析zh_TW
dc.subject大型語言模型zh_TW
dc.subjectESG disclosureen
dc.subjecttext summarizationen
dc.subjectESG disclosureen
dc.subjectlarge language models (LLMs)en
dc.subjectsentiment analysisen
dc.subjectfinancial performanceen
dc.subjecttext summarizationen
dc.subjectfinancial performanceen
dc.subjectsentiment analysisen
dc.subjectlarge language models (LLMs)en
dc.titleESG文本具有財務資訊性嗎?大型語言模型摘要與情緒的角色探討zh_TW
dc.titleAre ESG Narratives Financially Informative?The Role of LLM Summaries and Sentimenten
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳坤志;顏如君zh_TW
dc.contributor.oralexamcommitteeKun-Chih Chen;Ju-Chun Yenen
dc.subject.keywordESG揭露,大型語言模型,情緒分析,財務表現,文字摘要,zh_TW
dc.subject.keywordESG disclosure,large language models (LLMs),sentiment analysis,financial performance,text summarization,en
dc.relation.page74-
dc.identifier.doi10.6342/NTU202501836-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-07-17-
dc.contributor.author-college管理學院-
dc.contributor.author-dept會計學系-
dc.date.embargo-lift2026-08-31-
顯示於系所單位:會計學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
1.29 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved