Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資料科學學位學程
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97894
Title: 運用可解釋與深度學習模型的花蓮海岸浪高預測
Advancing Coastal Wave Height Predictions at Hualien with Interpretable and Deep Learning Models
Authors: 龔泓愷
Hung-Kai Kung
Advisor: 王志宇
Chih-Yu Wang
Co-Advisor: 謝宏昀
Hung-Yun Hsieh
Keyword: 風浪,時空關係,可解釋模型,深度學習,
wind-wave,spatiotemporal relationships,interpretable models,deep learning,
Publication Year : 2025
Degree: 碩士
Abstract: 準確的浪高預測對海岸與海洋活動至關重要,尤其在台灣,冬季東北季風常帶來劇烈的浪高變化。本研究聚焦於花蓮地區,該地浪高資料呈現不規則的週期性與頻繁的短期弱訊號波動,使精準的浪高預測面臨挑戰。我們首先使用可解釋的機器學習模型,如隨機森林(Random Forest),深入探究輸入變數與浪高之間的關係,並找出關鍵的預測因子。接著在整合多個測站的觀測資料後,我們善用其地理與時空分布特性,大幅提升模型的準確性,尤以長期預測成效最為顯著。在此基礎上,我們導入先進的深度學習模型,包括 Transformer 和 Informer 架構,進一步強化預測能力。研究結果顯示,雖然引入鄰近測站資料能顯著提升準確度,但若模型過度依賴最近的本地浪高觀測值,則可能導致遲滯現象。雖然遠處站點的風速資料有助於長期的預測,但如何能有效減緩此遲滯現象仍是未來模型發展的重要課題。
Accurate wave height prediction is essential for coastal and oceanic activities, especially in Taiwan, where winter northeast monsoons cause substantial wave variations. This study investigates Hualien, where wave data shows irregular periodicity and frequent short-term fluctuations, complicating precise prediction. We first applied interpretable machine learning models, such as Random Forest, to examine relationships between input variables and wave height, identifying key predictive features. By integrating data from multiple stations, we leveraged spatiotemporal patterns to improve accuracy, especially over longer horizons. Building on these insights, we implemented deep learning architectures, including Transformer and Informer models, to enhance performance. Results show that surrounding station data improves accuracy, but reliance on recent local measurements introduces lag. While wind speed data from remote stations supports longer-term predictions, mitigating lag remains a key challenge for future modeling.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97894
DOI: 10.6342/NTU202500900
Fulltext Rights: 同意授權(限校園內公開)
metadata.dc.date.embargo-lift: 2030-06-21
Appears in Collections:資料科學學位學程

Files in This Item:
File SizeFormat 
ntu-113-2.pdf
  Restricted Access
17.99 MBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved