請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97894完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王志宇 | zh_TW |
| dc.contributor.advisor | Chih-Yu Wang | en |
| dc.contributor.author | 龔泓愷 | zh_TW |
| dc.contributor.author | Hung-Kai Kung | en |
| dc.date.accessioned | 2025-07-22T16:06:39Z | - |
| dc.date.available | 2025-07-23 | - |
| dc.date.copyright | 2025-07-22 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-15 | - |
| dc.identifier.citation | [1] M. Alday, F. Ardhuin, G. Dodet, and M. Accensi. Accuracy of numerical wave model results: Application to the atlantic coasts of europe. Ocean Science, 18(6):1665–1689, 2022.
[2] S. Astariz and G. Iglesias. The economics of wave energy: A review. Renewable and Sustainable Energy Reviews, 45:397–408, 2015. [3] C. T. Bishop, M. A. Donelan, and K. K. Kahma. Shore protection manual's wave prediction reviewed. Coastal Engineering, 17(1-2):25–48, 1992. [4] L. Breiman. Random forests. Machine learning, 45:5–32, 2001. [5] C. L. Bretschneider. Revisions in wave forecasting: deep and shallow water. Coastal Engineering Proceedings, (6):3–3, 1957. [6] L. Cai, S. Shang, G. Wei, Z. He, Y. Xie, K. Liu, T. Zhou, J. Chen, F. Zhang, and Y. Li. Assessment of significant wave height in the taiwan strait measured by a single hf radar system. Journal of Atmospheric and Oceanic Technology, 36(7):1419–1432, 2019. [7] A. Callens, D. Morichon, S. Abadie, M. Delpey, and B. Liquet. Using random forest and gradient boosting trees to improve wave forecast at a specific location. Applied Ocean Research, 104:102339, 2020. [8] Central Weather Administration, Taiwan. 中央氣象局臺灣海峽測站列. 2025. Accessed: 2025-02-05. [9] Central Weather Administration, Taiwan. 測站資料 - 中央氣象局. 2025. Accessed: 2025-02-05. [10] Central Weather Administration, Taiwan. 花蓮浮標每月波高統計表. (2004-2023). 2025. Accessed: 2025-02-05. [11] W.-T. Chao and T.-J. Kuo. Long short-term memory networks' application on ty- phoon wave prediction for the western coast of taiwan. Sensors, 24(13):4305, 2024. [12] S.-T. Chen and Y.-W. Wang. Improving coastal ocean wave height forecasting during typhoons by using local meteorological and neighboring wave data in support vector regression models. Journal of Marine Science and Engineering, 8(3):149, 2020. [13] A. M. Cornett. A global wave energy resource assessment. In ISOPE International Ocean and Polar Engineering Conference, pages ISOPE-1. ISOPE, 2008. [14] M. Deo and C. S. Naidu. Real time wave forecasting using neural networks. Ocean engineering, 26(3):191–203, 1998. [15] M. C. Deo, A. Jha, A. Chaphekar, and K. Ravikant. Neural networks for wave fore- casting. Ocean engineering, 28(7):889–898, 2001. [16] J. Devlin. Bert: Pre-training of deep bidirectional transformers for language under- standing. arXiv preprint arXiv:1810.04805, 2018. [17] S. Fan, N. Xiao, and S. Dong. A novel model to predict significant wave height based on long short-term memory network. Ocean Engineering, 205:107298, 2020. [18] V. Fanti, Ó. Ferreira, V. Kimmerer, and C. Loureiro. Improved estimates of extreme wave conditions in coastal areas from calibrated global reanalyses. Communications Earth & Environment, 4(1):51, 2023. [19] A. F. Haeselsteiner and K.-D. Thoben. Predicting wave heights for marine design by prioritizing extreme events in a global model. Renewable Energy, 156:1146–1157, 2020. [20] K. Hasselmann, T. P. Barnett, E. Bouws, H. Carlson, D. E. Cartwright, K. Enke, J. Ewing, A. Gienapp, D. Hasselmann, P. Kruseman, et al. Measurements of wind-wave growth and swell decay during the joint north sea wave project (jonswap). Erganzungsheft zur Deutschen Hydrographischen Zeitschrift, Reihe A, 1973. [21] D. H. Klinger, A. M. Eikeset, B. Davíðsdóttir, A.-M. Winter, and J. R. Watson. The mechanics of blue growth: management of oceanic natural resource use with multi- ple, interacting sectors. Marine Policy, 87:356–362, 2018. [22] T. Kodaira, K. Saamai, R. Minatsu, T. Fukui, T. Zhu, and T. Wasueda. Uncertainty in wave hindcasts in the north atlantic ocean. Marine Structures, 89:103370, 2023. [23] C. H. Lashley, B. Zamafungih, J. D. Bricker, J. Van der Meer, C. Altomare, T. Suzuki, V. Roeber, and P. Oostorlo. Benchmarking of numerical models for wave over- topping at dikes with shallow mildly sloping foreshores: Accuracy versus speed. Environmental Modeling & Software, 130:104740, 2020. [24] B.-C. Lee, H. Chiera, H.-Y. Cheng, and M.-D. Chiou. Evaluation of operational wave forecasts for the northeastern coast of taiwan. Terrestrial, Atmospheric & Oceanic Sciences, 21(1), 2010. [25] M. Lehmann, F. Karimpoor, C. A. Goudet, P. T. Jacobson, and M.-R. Alam. Ocean wave energy in the united states: Current status and future perspectives. Renewable and Sustainable Energy Reviews, 74:1300–1313, 2017. [26] G. Li, G. Weiss, M. Moeller, S. Townley, and M. R. Redmont. Wave energy converter control by wave prediction and dynamic programming. Renewable energy, 48:392– 403, 2012. [27] Y. Liu, W. Lu, D. Wang, Z. Lai, C. Ying, X. Li, Y. Han, Z. Wang, and C. Dong. Spatiotemporal wave forecast with transformer-based network: A case study for the northwestern pacific ocean. Ocean Modelling, 188:102323, 2024. [28] S. Londhe and V. Panchang. One-day wave forecasts based on artificial neural net- works. Journal of Atmospheric and Oceanic Technology, 22(11):1593–1603, 2006. [29] R. Lou, Z. Lv, and M. Guizani. Wave height prediction suitable for maritime transportation based on green ocean of things. IEEE Transactions on Artificial Intelligence, 4(2):328–337, 2022. [30] R. Lou, W. Wang, X. Li, Y. Zheng, and Z. Lv. Prediction of ocean wave height suitable for ship autopilot. IEEE Transactions on Intelligent Transportation Systems, 23(12):25557–25566, 2021. [31] W.-S. Lu, C.-H. Tseng, S.-C. Hsiao, W.-S. Chiang, and K.-C. Hu. Future projection for wave climate around taiwan using weather-type statistical downscaling method. Journal of Marine Science and Engineering, 10(12):1823, 2022. [32] J. Mahjoobi and A. Etemad-Shahidi. An alternative approach for the prediction of significant wave heights based on classification and regression trees. Applied Ocean Research, 30(3):172–177, 2008. [33] J. Mahjoobi and E. A. Mosabbeb. Prediction of significant wave height using re- gressive support vector machines. Ocean Engineering, 36(5):339–347, 2009. [34] O. Makarynskyy. Improving wave predictions with artificial neural networks. Ocean engineering, 31(5-6):709–724, 2004. [35] S. Mandal and N. Prabaharan. Ocean wave forecasting using recurrent neural net- works. Ocean engineering, 33(10):1401–1410, 2006. [36] S. Mandal and N. Prabaharan. Ocean wave prediction using numerical and neural network models. 2010. [37] R. A. Meese and K. Rogoff. Empirical exchange rate models of the seventies: Do they fit out of sample? Journal of international economics, 14(1-2):3–24, 1983. [38] L. Mentaschi, M. I. Vousdoukas, G. García-Sánchez, T. Fernández-Montblanc, A. Roland, E. Voukouvalas, I. Federico, A. Abdolali, Y. J. Zhang, and L. Feyen. A global unstructured, coupled, high-resolution hindcast of waves and storm surge. Frontiers in Marine Science, 10:1233679, 2023. [39] H. Mitsuyasu. Reminiscences on the study of wind waves. Proceedings of the Japan Academy, Series B, 91(4):109–130, 2015. [40] H. Mitsuyasu and Y. Yoshida. Air-sea interactions under the existence of opposing swell. Journal of Oceanography, 61:141–154, 2005. [41] S. S. Naeini and R. Suaiki. A physics-informed machine learning model for time- dependent wave runup prediction. Ocean Engineering, 295:116986, 2024. [42] Y. Ou, F. Zhai, and P. L. Li. Interannual wave climate variability in the taiwan strait and its relationship to enso events. Journal of Oceanology and Limnology, 36(6):2110–2129, 2018. [43] T. Pang, X. Wang, R. A. Nawaz, G. Keefe, and T. Adekannbi. Coastal erosion and climate change: A review on coastal-change process and modeling. Ambio, 52(12):2034–2052, 2023. [44] A. Radford. Improving language understanding by generative pre-training. 2018. [45] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of machine learning research, 21(140):1–67, 2020. [46] T. Sadeghifar, M. Nouri Morfagh, M. Torabi Azad, and M. Mohammad Mohdzadeh. Coastal wave height prediction using recurrent neural networks (rnns) in the south caspian sea. Marine Geodesy, 40(6):454–465, 2017. [47] K. D. Splinter and G. Coco. Challenges and opportunities in coastal shoreline pre- diction. Frontiers in Marine Science, 8:788657, 2021. [48] H. U. Sverndrup and W. H. Munk. Wind, sea and swell: Theory of relations for forecasting. Number 601. Hydrographic Office, 1947. [49] C.-P. Tsai, C. Lin, and J.-N. Shen. Neural network for wave forecasting among multi-stations. Ocean Engineering, 29(13):1683–1695, 2002. [50] J.-C. Tsai and C.-H. Tsai. Wave measurements by pressure transducers using artificial neural networks. Ocean Engineering, 36(15-16):1149–1157, 2009. [51] A. Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017. [52] S. Vitousek, K. Vos, K. D. Splinter, K. Parker, A. O’Neill, A. C. Foxgrover, M. K. Hayden, J. A. Thomas, L. Eriksson, and P. L. Barnard. Scalable, data-assimilated models predict large-scale shoreline response to waves and sea-level rise. Scientific Reports, 14(1):28029, 2024. [53] C.-C. Wei. Nearshore wave predictions using data mining techniques during ty- phoons: a case study near taiwan’s northeastern coast. Energies, 11(1):11, 2017. [54] C.-C. Wei and H.-C. Chang. Forecasting of typhoon-induced wind-wave by using convolutional deep learning on fused data of remote sensing and ground measure- ments. Sensors, 21(15):5234, 2021. [55] C.-C. Wei and C.-J. Hsieh. Using adjacent buoy information to predict wave heights of typhoons offshore of northeastern taiwan. water, 10(12):1800, 2018. [56] J. Zhang, F. Luo, X. Quan, Y. Wang, J. Shi, C. Shen, and C. Zhang. Improving wave height prediction accuracy with deep learning. Ocean Modelling, 188:102312, 2024. [57] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang. Informer: Be- yond efficient transformer for long sequence time-series forecasting. In Proceedings of the AAAI conference on artificial intelligence, volume 35, pages 11106–11115, 2021. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97894 | - |
| dc.description.abstract | 準確的浪高預測對海岸與海洋活動至關重要,尤其在台灣,冬季東北季風常帶來劇烈的浪高變化。本研究聚焦於花蓮地區,該地浪高資料呈現不規則的週期性與頻繁的短期弱訊號波動,使精準的浪高預測面臨挑戰。我們首先使用可解釋的機器學習模型,如隨機森林(Random Forest),深入探究輸入變數與浪高之間的關係,並找出關鍵的預測因子。接著在整合多個測站的觀測資料後,我們善用其地理與時空分布特性,大幅提升模型的準確性,尤以長期預測成效最為顯著。在此基礎上,我們導入先進的深度學習模型,包括 Transformer 和 Informer 架構,進一步強化預測能力。研究結果顯示,雖然引入鄰近測站資料能顯著提升準確度,但若模型過度依賴最近的本地浪高觀測值,則可能導致遲滯現象。雖然遠處站點的風速資料有助於長期的預測,但如何能有效減緩此遲滯現象仍是未來模型發展的重要課題。 | zh_TW |
| dc.description.abstract | Accurate wave height prediction is essential for coastal and oceanic activities, especially in Taiwan, where winter northeast monsoons cause substantial wave variations. This study investigates Hualien, where wave data shows irregular periodicity and frequent short-term fluctuations, complicating precise prediction. We first applied interpretable machine learning models, such as Random Forest, to examine relationships between input variables and wave height, identifying key predictive features. By integrating data from multiple stations, we leveraged spatiotemporal patterns to improve accuracy, especially over longer horizons. Building on these insights, we implemented deep learning architectures, including Transformer and Informer models, to enhance performance. Results show that surrounding station data improves accuracy, but reliance on recent local measurements introduces lag. While wind speed data from remote stations supports longer-term predictions, mitigating lag remains a key challenge for future modeling. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-22T16:06:39Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-22T16:06:39Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | * Verification Letter from the Oral Examination Committee (i)
* Acknowledgements (iii) * 摘要 (v) * Abstract (vii) * Contents (ix) * List of Figures (xiii) * List of Tables (xix) * Chapter 1 Introduction (1) * 1.1 The Importance of Accurate Wave Predictions (1) * 1.2 Seasonal Wave Variability around Taiwan (2) * 1.3 Study Overview (2) * Chapter 2 Literature Review (5) * 2.1 Evolution of Wave Height Prediction Methods (5) * 2.2 Advanced Neural Network and Hybrid Approaches (6) * 2.3 Progress of Wave Height Prediction in Taiwan (8) * Chapter 3 Data (11) * 3.1 Buoy and Meteorological Data (11) * 3.2 Wave Height Analysis (14) * 3.3 Relationship between Wind Speed and Wave Height (17) * Chapter 4 Methodology (23) * 4.1 Models Used (23) * 4.1.1 Random Forest (23) * 4.1.2 Transformer (25) * 4.1.3 Informer (26) * 4.2 Data Preprocessing (27) * 4.2.1 Random Forest Models (28) * 4.2.2 Transformer and Informer Models (29) * 4.3 Error Metrics and Lag Effect (30) * Chapter 5 Experiments (33) * 5.1 Implementation Details (33) * 5.1.1 Experimental Setups (33) * 5.1.2 Model Building (36) * 5.2 Wave Height Prediction with Wind (37) * 5.2.1 Experiment 1 (38) * 5.2.2 Experiment 2 (41) * 5.3 Wave Height Prediction with Wind and Wave (45) * 5.3.1 Experiment 3 (45) * 5.3.2 Experiment 4 (48) * 5.4 Wave Height Level Prediction (54) * 5.4.1 Experiment 5 (55) * 5.4.2 Experiment 6 (57) * 5.5 Wave Height Prediction at Guishandao (62) * 5.5.1 Experiment 7 (63) * 5.5.2 Experiment 8 (66) * Chapter 6 Discussion (71) * 6.1 Evaluating Prior Model Performance (71) * 6.1.1 Wave Height Prediction with Wind (72) * 6.1.2 Wave Height Prediction with Wind and Wave (72) * 6.1.3 Wave Height Level Prediction (74) * 6.2 Input Length Effects on Informer (77) * Chapter 7 Conclusion (83) * References (87) | - |
| dc.language.iso | en | - |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 風浪 | zh_TW |
| dc.subject | 時空關係 | zh_TW |
| dc.subject | 可解釋模型 | zh_TW |
| dc.subject | 風浪 | zh_TW |
| dc.subject | 時空關係 | zh_TW |
| dc.subject | 可解釋模型 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | spatiotemporal relationships | en |
| dc.subject | wind-wave | en |
| dc.subject | deep learning | en |
| dc.subject | interpretable models | en |
| dc.subject | spatiotemporal relationships | en |
| dc.subject | wind-wave | en |
| dc.subject | deep learning | en |
| dc.subject | interpretable models | en |
| dc.title | 運用可解釋與深度學習模型的花蓮海岸浪高預測 | zh_TW |
| dc.title | Advancing Coastal Wave Height Predictions at Hualien with Interpretable and Deep Learning Models | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 謝宏昀 | zh_TW |
| dc.contributor.coadvisor | Hung-Yun Hsieh | en |
| dc.contributor.oralexamcommittee | 梁茂昌;蘇黎 | zh_TW |
| dc.contributor.oralexamcommittee | Mao-Chang Liang;Li Su | en |
| dc.subject.keyword | 風浪,時空關係,可解釋模型,深度學習, | zh_TW |
| dc.subject.keyword | wind-wave,spatiotemporal relationships,interpretable models,deep learning, | en |
| dc.relation.page | 93 | - |
| dc.identifier.doi | 10.6342/NTU202500900 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-17 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 資料科學學位學程 | - |
| dc.date.embargo-lift | 2030-06-21 | - |
| 顯示於系所單位: | 資料科學學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 17.99 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
