請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97692
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鄭宇翔 | zh_TW |
dc.contributor.advisor | Yu-Hsiang Cheng | en |
dc.contributor.author | 林祈安 | zh_TW |
dc.contributor.author | Chi-An Lin | en |
dc.date.accessioned | 2025-07-11T16:12:39Z | - |
dc.date.available | 2025-07-12 | - |
dc.date.copyright | 2025-07-11 | - |
dc.date.issued | 2025 | - |
dc.date.submitted | 2025-07-04 | - |
dc.identifier.citation | [1] Christopher Martin, Stuart Clark, Joe Galliano, and John Lovberg. Advances in Millimeter-Wave Imaging Technology for Enhanced Vision Systems. In Proceedings of The 21st Digital Avionics Systems Conference, volume 2, pages 11D4–11D4. IEEE, 2002.
[2] A Tessmann, A Leuther, M Kuri, H Massler, M Riessle, H Essen, S Stanko, R Sommer, M Zink, R Stibal, et al. 220 GHz Low-Noise Amplifier Modules for Radiometric Imaging Applications. In 2006 European Microwave Integrated Circuits Conference, pages 137–140. IEEE, 2006. [3] M Ferri, F Serrano, V Dainelli, and G Galati. Millimeter-Wave Technologies for Airport Surface Movement Control Applications. In 3rd ESA Workshop on Millimeter-Wave Technology and Applications, pages 21–23, 2003. [4] H Essen, A Wahlen, R Sommer, G Konrad, M Schlechtweg, and A Tessmann. Very High Bandwidth Millimeter-Wave Radar. Electronics Letters, 41(22):1247–1249, 2005. [5] Noël Deferm and Patrick Reynaert. A 120 GHz Fully Integrated 10 Gb/s Short-Range Star-QAM Wireless Transmitter with On-Chip Bondwire Antenna in 45 nm Low Power CMOS. IEEE Journal of Solid-State Circuits, 49(7):1606–1616, 2014. [6] L Luini, G Roveda, M Zaffaroni, M Costa, and C Riva. EM Wave Propagation Experiment at E Band and D Band for 5G Wireless Systems: Preliminary Results. In 12th European Conference on Antennas and Propagation (EuCAP 2018), pages 1–5. IET, 2018. [7] Ho-Jin Song. Packages for Terahertz Electronics. Proceedings of the IEEE, 105(6):1121–1138, 2017. [8] Wonseok Choe, Jungsik Kim, and Jinho Jeong. Full h-band waveguide-to-coupled microstrip transition using dipole antenna with directors. IEICE Electronics Express, 14(13):20170487–20170487, 2017. [9] Jungsik Kim, Wonseok Choe, and Jinho Jeong. Submillimeter-wave waveguide-to-microstrip transitions for wide circuits/ wafers. IEEE Transactions on Terahertz Science and Technology, 7(4):440–445, 2017. [10] Alexis Zamora, Kevin MKH Leong, Theodore Reck, Goutam Chattopadhyay, and William Deal. A 170–280 GHz InP HEMT Low Noise Amplifier. In 2014 39th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), pages 1–2. IEEE, 2014. [11] Ellingson Steven W. Electromagnetics vol 2. 2020. [12] V. H. Rumsey. Frequency independent antennas. Academic Press, 1966. [13] Henry George Booker. Slot aerials and their relation to complementary wire aerials (babinet’s principle). Journal of the Institution of Electrical Engineers-Part III: Radio and Communication Engineering, 93(15):620–626, 1946. [14] J. S. Dahele and K. F. Lee. On the resonant frequencies of the triangular patch antenna. In IEEE Trans. Antennas Propag., volume 35, pages 100–101, 1987. [15] Rafael Gonçalves Licursi de Mello, Anne Claire Lepage, and Xavier Begaud. The bow‐tie antenna: Performance limitations and improvements. IET Microwaves, Antennas & Propagation, 16(5):283–294, 2022. [16] A Tessmann, A Leuther, V Hurm, H Massler, M Zink, M Kuri, M Riessle, R Losch, M Schlechtweg, and O Ambacher. A 300 GHz mHEMT amplifier module. In 2009 IEEE International Conference on Indium Phosphide & Related Materials, pages 196–199. IEEE, 2009. [17] P Huang, R Lai, R Grundbacher, and B Gorospe. A 20-mW G-band monolithic driver amplifier using 0.07-μm InP HEMT. In 2006 IEEE MTT-S International Microwave Symposium Digest, pages 806–809. IEEE, 2006. [18] Ho-Jin Song, Katsuhiro Ajito, Yoshifumi Muramoto, Atsushi Wakatsuki, Tadao Nagatsuma, and Naoya Kukutsu. Uni-travelling-carrier photodiode module generating 300 GHz power greater than 1 mW. IEEE Microwave and Wireless Components Letters, 22(7):363–365, 2012. [19] Goutam Chattopadhyay, Erich Schlecht, John S Ward, John J Gill, Hamid HS Javadi, Frank Maiwald, and Imran Mehdi. An all-solid-state broad-band frequency multiplier chain at 1500 GHz. IEEE Transactions on Microwave Theory and Techniques, 52(5):1538–1547, 2004. [20] Suzanne Martin, Barbara Nakamura, Andy Fung, Peter Smith, Jean Bruston, Alain Maestrini, Frank Maiwald, Peter Siegel, Erich Schlecht, and Imran Mehdi. Fabrication of 200 to 2700 GHz multiplier devices using GaAs and metal membranes, volume 3. IEEE, 2001. [21] E Schlecht, G Chattopadhyay, A Maestrini, A Fung, S Martin, D Pukala, J Bruston, and I Mehdi. 200, 400 and 800 GHz Schottky diode “substrateless” multipliers: design and results, volume 3. IEEE, 2001. [22] Goutam Chattopadhyay, Erich Schlecht, John Gill, Suzanne Martin, Alain Maestrini, David Pukala, Frank Maiwald, and Imran Mehdi. A broadband 800 GHz Schottky balanced doubler. IEEE Microwave and Wireless Components Letters, 12(4):117–118, 2002. [23] Kevin MKH Leong, William R Deal, Vesna Radisic, Xiao Bing Mei, Jansen Uyeda, Lorene Samoska, Andy Fung, Todd Gaier, and Richard Lai. A 340–380 GHz integrated CB-CPW-to-waveguide transition for sub millimeter-wave MMIC packaging. IEEE Microwave and Wireless Components Letters, 19(6):413–415, 2009. [24] Huali Zhu, Yong Zhang, Chengkai Wu, Fei Xiao, Ruimin Xu, and Bo Yan. Integrated dipole antenna with bandwidth enhancement for terahertz waveguide-to-CPWG transition. IEEE Antennas and Wireless Propagation Letters, 19(12):2433–2436, 2020. [25] WR Deal, XB Mei, V Radisic, K Leong, S Sarkozy, B Gorospe, J Lee, PH Liu, W Yoshida, J Zhou, et al. Demonstration of a 0.48 THz amplifier module using InP HEMT transistors. IEEE Microwave and Wireless Components Letters, 20(5):289–291, 2010. [26] Lorene Samoska, William R Deal, Goutam Chattopadhyay, David Pukala, Andy Fung, Todd Gaier, Mary Soria, Vesna Radisic, Xiaobing Mei, and Richard Lai. A submillimeter-wave HEMT amplifier module with integrated waveguide transitions operating above 300 GHz. IEEE Transactions on Microwave Theory and Techniques, 56(6):1380–1388, 2008. [27] Vesna Radisic, William R Deal, Kevin MKH Leong, XB Mei, Wayne Yoshida, Po-Hsin Liu, Jansen Uyeda, Andy Fung, Lorene Samoska, Todd Gaier, et al. A 10-mW submillimeter-wave solid-state power-amplifier module. IEEE Transactions on Microwave Theory and Techniques, 58(7):1903–1909, 2010. [28] Vesna Radisic, Kevin MKH Leong, Stephen Sarkozy, Xiaobing Mei, Wayne Yoshida, Po-Hsin Liu, William R Deal, and Richard Lai. 220-GHz solid-state power amplifier modules. IEEE Journal of Solid-State Circuits, 47(10):2291–2297, 2012. [29] Hiroshi Hamada, Toshihiko Kosugi, Ho-Jin Song, Makoto Yaita, Amine El Moutaouakil, Hideaki Matsuzaki, and Akihiko Hirata. 300-GHz band 20-Gbps ASK transmitter module based on InP-HEMT MMICs. In 2015 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), pages 1–4. IEEE, 2015. [30] Vesna Radisic, Kevin MKH Leong, Xiaobing Mei, Stephen Sarkozy, Wayne Yoshida, and William R Deal. Power amplification at 0.65 THz using InP HEMTs. IEEE Transactions on Microwave Theory and Techniques, 60(3):724–729, 2011. [31] Xiaobing Mei, Wayne Yoshida, Mike Lange, Jane Lee, Joe Zhou, Po-Hsin Liu, Kevin Leong, Alex Zamora, Jose Padilla, Stephen Sarkozy, et al. First demonstration of amplification at 1 THz using 25-nm InP high electron mobility transistor process. IEEE Electron Device Letters, 36(4):327–329, 2015. [32] Kevin MKH Leong, William R Deal, Vesna Radisic, Xiao Bing Mei, Jansen Uyeda, Lorene Samoska, Andy Fung, Todd Gaier, and Richard Lai. A 340–380 GHz integrated CB-CPW-to-waveguide transition for sub millimeter-wave MMIC packaging. IEEE Microwave and Wireless Components Letters, 19(6):413–415, 2009. [33] K Leong, XB Mei, W Yoshida, M Lange, A Zamora, B Gorospe, and WR Deal. Progress in InP HEMT submillimeter wave circuits and packaging. In 2015 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), pages 1–4. IEEE, 2015. [34] M Urteaga, M Seo, J Hacker, Z Griffith, A Young, R Pierson, P Rowell, A Skalare, and MJW Rodwell. InP HBT integrated circuit technology for terahertz frequencies. In 2010 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), pages 1–4. IEEE, 2010. [35] Axel Tessmann, Arnulf Leuther, Volker Hurm, Ingmar Kallfass, Hermann Massler, Michael Kuri, Markus Riessle, Martin Zink, Rainer Loesch, Matthias Seelmann-Eggebert, et al. Metamorphic HEMT MMICs and modules operating between 300 and 500 GHz. IEEE Journal of Solid-State Circuits, 46(10):2193–2202, 2011. [36] Axel Tessmann, Volker Hurm, Arnulf Leuther, Hermann Massler, Rainer Weber, Michael Kuri, Markus Riessle, Hans-Peter Stulz, Martin Zink, Michael Schlechtweg, et al. 243 GHz low-noise amplifier MMICs and modules based on metamorphic HEMT technology. International Journal of Microwave and Wireless Technologies, 6(3-4):215–223, 2014. [37] V Hurm, R Weber, A Tessmann, H Massler, A Leuther, M Kuri, M Riessle, HP Stulz, M Zink, M Schlechtweg, et al. A 243 GHz LNA module based on mHEMT MMICs with integrated waveguide transitions. IEEE Microwave and Wireless Components Letters, 23(9):486–488, 2013. [38] Ho-Jin Song, Hideaki Matsuzaki, and Makoto Yaita. Sub-millimeter and terahertz-wave packaging for large chip-width MMICs. IEEE Microwave and Wireless Components Letters, 26(6):422–424, 2016. [39] Adarsh Deepak, Thomas D Wilkerson, and Lothar H Ruhnke. Atmospheric water vapor. Elsevier, 2013. [40] Peter H Siegel. Terahertz technology. IEEE Transactions on Microwave Theory and Techniques, 50(3):910–928, 2002. [41] Roger Appleby and H Bruce Wallace. Standoff detection of weapons and contraband in the 100 GHz to 1 THz region. IEEE Transactions on Antennas and Propagation, 55(11):2944–2956, 2007. [42] Yihong Yang, Alisha Shutler, and DJOE Grischkowsky. Measurement of the transmission of the atmosphere from 0.2 to 2 THz. Optics Express, 19(9):8830–8838, 2011. [43] Mitsubishi Gas Chemical. Non-Halogenated Low CTE BT Resin Laminate for IC Plastic Packages. (Accessed: 01 March 2025). [44] Robert E Collin. Foundations for Microwave Engineering. John Wiley & Sons, 2007. [45] N-W Chen, J-M Wun, H-C Wang, R-L Chao, C Koh, C H Dreyfus, and J-W Shi. Design and Analysis of Waveguide-Coupled Photonic THz Transmitters with an Extremely Wide Fractional Bandwidth. Journal of Lightwave Technology, 36(19):4235–4242, 2018. [46] P P Viezbicke. Yagi Antenna Design, volume 688. US Government Printing Office, 1976. [47] N Kaneda, Y Qian, and T Itoh. A Broad-Band Microstrip-to-Waveguide Transition Using Quasi-Yagi Antenna. IEEE Transactions on Microwave Theory and Techniques, 47(12):2562–2567, 1999. [48] S Koziel, S Ogurtsov, W Zieniutycz, and A Bekasiewicz. Design of a Planar UWB Dipole Antenna with an Integrated Balun Using Surrogate-Based Optimization. IEEE Antennas and Wireless Propagation Letters, 14:366–369, 2014. [49] E Topak, J Hasch, and T Zwick. Compact Topside Millimeter-Wave Waveguide-to-Microstrip Transitions. IEEE Microwave and Wireless Components Letters, 30(2):170–172, 2020. [50] P Hügler, T Chaloun, and C Waldschmidt. A Wideband Differential Microstrip-to-Waveguide Transition for Multilayer PCBs at 120 GHz. IEEE Microwave and Wireless Components Letters, 30(2):170–172, 2020. [51] AR Kerr, E Wollack, and N Horner. Waveguide flanges for ALMA instrumentation. ALMA Memo, 278, 1999. [52] Leo Breiman. Random forests. Machine Learning, 45:5–32, 2001. [53] dida Datenschmiede GmbH. What is random forest? [54] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine Learning in Python. The Journal of Machine Learning Research, 12:2825–2830, 2011. [55] Michael D McKay, Richard J Beckman, and William J Conover. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 42(1):55–61, 2000. [56] Razi Sheikholeslami and Saman Razavi. Progressive Latin Hypercube Sampling: An efficient approach for robust sampling-based analysis of environmental models. Environmental Modelling & Software, 93:109–126, 2017. [57] lukjonis. The Future of Forests – Eurac Research. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97692 | - |
dc.description.abstract | 本論文設計、模擬並量測兩種用於太赫茲頻段的波導至平面電路轉接結構,目標為實現涵蓋 D 頻段(110–170 GHz)的全頻操作。第一種結構為波導至偶合微帶線(coupled MS)轉接,採用整合導向器(director)的領結天線(bowtie antenna)以增進頻寬與匹配表現。第二種結構透過 40 度徑向 stub balun,將偶合微帶訊號轉換為單條微帶線(single MS),有助於後續與其他平面電路的整合。
為提升設計效率並克服傳統人工調參的限制,本研究導入機器學習輔助的最佳化流程。設計流程結合了拉丁超立方取樣(LHS)、隨機森林回歸模型(RF)、特徵重要性分析與主動學習循環。本論文提出兩種應用案例:一為基於特徵重要性之局部最佳化,另一則自頭開始以模型引導探索並進行爬山法強化,兩者皆成功達成 D 頻段全頻寬要求,且在傳輸性能上超越傳統設計。 本研究進一步實作實體轉接結構,並於背對背波導平台進行量測。實測插入損耗皆落在可接受範圍內,模擬與實測之間的誤差約為 1.5–1.6 dB,主要歸因於波導導體損失與 UG-387 法蘭接觸不完全等物理因素。整體結果驗證本研究所設計之轉接結構的可行性與系統整合性。 本論文所提出之轉接架構與最佳化流程,為未來太赫茲系統封裝與第六代(6G)通訊、衛星鏈路整合應用提供具實用性與可擴展性的解決方案。 | zh_TW |
dc.description.abstract | This thesis presents the design, simulation, and measurement of two high-frequency transition structures connecting waveguides to planar circuits, specifically targeting full-band operation across the D-band (110–170 GHz). The first structure, a waveguide-to-coupled microstrip transition, employs a bowtie antenna with integrated directors to enhance bandwidth and matching. The second structure converts the coupled signal to a single microstrip line using a 40 degree radial stub balun, enabling broader integration with planar RF systems.
To improve design efficiency and overcome the limitations of manual tuning, a machine learning (ML)-aided optimization methodology is introduced. This workflow integrates Latin Hypercube Sampling, random forest regression, feature importance analysis, and an active learning loop. Two ML design cases are presented: one uses model-guided refinement based on feature importance, and the other adopts full-cycle exploration and local optimization. Both designs achieved full D-band bandwidth with improved transmission metrics compared to conventional methods. Fabricated prototypes were measured using back-to-back waveguide setups. The measured insertion losses remained within acceptable limits, with consistent simulation-to-measurement deviation around 1.5–1.6 dB, attributed primarily to waveguide and flange-related imperfections. The results confirm the viability of the proposed transitions and validate the joint chip and waveguide co-design. The proposed structures and methodology provide practical and scalable solutions for terahertz system integration and offer insights for future high-frequency packaging in 6G and satellite communication applications. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-11T16:12:39Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2025-07-11T16:12:39Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i
摘要iii Abstract v Contents vii List of Figures xi List of Tables xvii Denotation xix Chapter 1 Introduction 1 1.1 Introduction to Terahertz Technology . . . . . . . . . . . . . . . . . 1 1.2 Importance of Terahertz Transition . . . . . . . . . . . . . . . . . . . 3 1.3 Objectives and Contributions . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Overview of Chapters and Sections . . . . . . . . . . . . . . . . . . 6 Chapter 2 Theoretical Foundations 9 2.1 Waveguide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Antenna . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.1 Hertzian Dipole . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.2 Dipole Antenna . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.3 Bow-Tie Antenna . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Chapter 3 Reference and Related Works 29 3.1 Overview of Split-Block Waveguide Packages at Terahertz Frequencies 29 3.2 Waveguide to IC Probe Transitions . . . . . . . . . . . . . . . . . . 30 3.3 Waveguide to IC Dipole Antenna Transitions . . . . . . . . . . . . . 32 3.4 Active MMIC Packages . . . . . . . . . . . . . . . . . . . . . . . . 36 Chapter 4 The D-Band Transition Structure 41 4.1 Frequency Band Selection . . . . . . . . . . . . . . . . . . . . . . . 41 4.2 Transition of WG to Coupled MS . . . . . . . . . . . . . . . . . . . 44 4.2.1 Dipole and Bow-Tie Antenna Design . . . . . . . . . . . . . . . . . 45 4.2.2 Directors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.2.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.3 Transition of WG to Single MS . . . . . . . . . . . . . . . . . . . . 49 4.3.1 Balun Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.3.2 Simulation Result . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.3.3 Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . 49 4.4 Transition Chip Holder Waveguide . . . . . . . . . . . . . . . . . . 50 4.5 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.5.2 Characterization of the Transition Chip Holder Waveguide . . . . . 56 4.5.3 WG-to-Coupled Microstrip Transition . . . . . . . . . . . . . . . . 57 4.5.4 WG-to-Single Microstrip Transition . . . . . . . . . . . . . . . . . 59 4.5.5 Measurement Discussion . . . . . . . . . . . . . . . . . . . . . . . 59 Chapter 5 Machine Learning-Aided Transition Design 61 5.1 Introduction and Motivation . . . . . . . . . . . . . . . . . . . . . . 61 5.2 Applied Machine Learning Techniques . . . . . . . . . . . . . . . . 62 5.2.1 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.2.2 Random Forest Model . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.2.3 Latin Hypercube Sampling . . . . . . . . . . . . . . . . . . . . . . 67 5.2.4 Candidate Selection Strategy . . . . . . . . . . . . . . . . . . . . . 68 5.2.5 Active Learning Loop . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.3 Machine Learning-Based Waveguide to Coupled Microstrip Transition 70 5.3.1 Objective and Feature Importance . . . . . . . . . . . . . . . . . . 70 5.3.2 Optimization Based on Important Features . . . . . . . . . . . . . . 71 5.3.3 Attempts at Model-Guided Point Selection . . . . . . . . . . . . . . 72 5.3.4 Optimized Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.4 Machine Learning-Based Waveguide to Single Microstrip Transition . 75 5.4.1 Design Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.4.2 Model Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.4.3 Initial Model-Guided Exploration . . . . . . . . . . . . . . . . . . . 78 5.4.4 Targeted Model-Guided Search . . . . . . . . . . . . . . . . . . . . 79 5.4.5 Hill Climbing Optimization . . . . . . . . . . . . . . . . . . . . . . 81 5.4.6 Optimized Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.5 Comparison with Traditional Designs . . . . . . . . . . . . . . . . . 83 5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Chapter 6 Conclusion and Discussion 87 References 89 Appendix A — J-Band Dipole Antenna Transitions 99 Appendix B — J-Band Probe Transition 103 Appendix C — D-Band Probe Transition 105 | - |
dc.language.iso | en | - |
dc.title | 應用機器學習設計之D頻帶波導至傳輸線轉接結構 | zh_TW |
dc.title | D-Band Waveguide to IC Transition Structures Designed Using Machine Learning | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 王鈺強;陳念偉 | zh_TW |
dc.contributor.oralexamcommittee | Yu-Chiang Frank Wang;Nan-Wei Chen | en |
dc.subject.keyword | 天線,領結型天線,機器學習,太赫茲,轉接, | zh_TW |
dc.subject.keyword | Antenna,Bow-tie antenna,Machine Learning,Terahertz,Transition, | en |
dc.relation.page | 105 | - |
dc.identifier.doi | 10.6342/NTU202501454 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2025-07-07 | - |
dc.contributor.author-college | 電機資訊學院 | - |
dc.contributor.author-dept | 電信工程學研究所 | - |
dc.date.embargo-lift | 2025-07-12 | - |
顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 18.17 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。