Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97692
Title: 應用機器學習設計之D頻帶波導至傳輸線轉接結構
D-Band Waveguide to IC Transition Structures Designed Using Machine Learning
Authors: 林祈安
Chi-An Lin
Advisor: 鄭宇翔
Yu-Hsiang Cheng
Keyword: 天線,領結型天線,機器學習,太赫茲,轉接,
Antenna,Bow-tie antenna,Machine Learning,Terahertz,Transition,
Publication Year : 2025
Degree: 碩士
Abstract: 本論文設計、模擬並量測兩種用於太赫茲頻段的波導至平面電路轉接結構,目標為實現涵蓋 D 頻段(110–170 GHz)的全頻操作。第一種結構為波導至偶合微帶線(coupled MS)轉接,採用整合導向器(director)的領結天線(bowtie antenna)以增進頻寬與匹配表現。第二種結構透過 40 度徑向 stub balun,將偶合微帶訊號轉換為單條微帶線(single MS),有助於後續與其他平面電路的整合。
為提升設計效率並克服傳統人工調參的限制,本研究導入機器學習輔助的最佳化流程。設計流程結合了拉丁超立方取樣(LHS)、隨機森林回歸模型(RF)、特徵重要性分析與主動學習循環。本論文提出兩種應用案例:一為基於特徵重要性之局部最佳化,另一則自頭開始以模型引導探索並進行爬山法強化,兩者皆成功達成 D 頻段全頻寬要求,且在傳輸性能上超越傳統設計。
本研究進一步實作實體轉接結構,並於背對背波導平台進行量測。實測插入損耗皆落在可接受範圍內,模擬與實測之間的誤差約為 1.5–1.6 dB,主要歸因於波導導體損失與 UG-387 法蘭接觸不完全等物理因素。整體結果驗證本研究所設計之轉接結構的可行性與系統整合性。
本論文所提出之轉接架構與最佳化流程,為未來太赫茲系統封裝與第六代(6G)通訊、衛星鏈路整合應用提供具實用性與可擴展性的解決方案。
This thesis presents the design, simulation, and measurement of two high-frequency transition structures connecting waveguides to planar circuits, specifically targeting full-band operation across the D-band (110–170 GHz). The first structure, a waveguide-to-coupled microstrip transition, employs a bowtie antenna with integrated directors to enhance bandwidth and matching. The second structure converts the coupled signal to a single microstrip line using a 40 degree radial stub balun, enabling broader integration with planar RF systems.
To improve design efficiency and overcome the limitations of manual tuning, a machine learning (ML)-aided optimization methodology is introduced. This workflow integrates Latin Hypercube Sampling, random forest regression, feature importance analysis, and an active learning loop. Two ML design cases are presented: one uses model-guided refinement based on feature importance, and the other adopts full-cycle exploration and local optimization. Both designs achieved full D-band bandwidth with improved transmission metrics compared to conventional methods.
Fabricated prototypes were measured using back-to-back waveguide setups. The measured insertion losses remained within acceptable limits, with consistent simulation-to-measurement deviation around 1.5–1.6 dB, attributed primarily to waveguide and flange-related imperfections. The results confirm the viability of the proposed transitions and validate the joint chip and waveguide co-design.
The proposed structures and methodology provide practical and scalable solutions for terahertz system integration and offer insights for future high-frequency packaging in 6G and satellite communication applications.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97692
DOI: 10.6342/NTU202501454
Fulltext Rights: 同意授權(限校園內公開)
metadata.dc.date.embargo-lift: 2025-07-12
Appears in Collections:電信工程學研究所

Files in This Item:
File SizeFormat 
ntu-113-2.pdf
Access limited in NTU ip range
18.17 MBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved