Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97526
Title: 單色k子棋
Monochromatic k in a row
Authors: 古國翰
Kuo-Han Ku
Advisor: 戴尚年
Shagnik Das
Keyword: k子棋,五子棋,位置遊戲,極值問題,Nikodym集合問題,
k in a row,Five in a row,Gomoku,Positional Game,Extremal Problem,Nikodym set Problem,
Publication Year : 2025
Degree: 碩士
Abstract: 本篇論文將探討一種k子棋的變體(即單色k子棋):兩位玩家輪流在給定的棋盤上下棋,其中雙方玩家所使用的棋子沒有顏色差異。遊戲會在棋盤上產生了一條k子連線時結束,由下最後一子的玩家獲勝。和一般的k子棋不同,玩家不再需要佔領一整條k子連線;僅需佔領某條k子連線的最後一個空位即可。

本篇聚焦在此類遊戲的總步數估計。嚴格來說,是對最終棋盤上棋子(之於棋盤格數)的密度做估計。作為原始遊戲棋盤的延伸,平面網格(Z^2)和超立方體([k]^d)是本篇主要探討的兩種棋盤類型。

就最小密度而言,對於平面網格棋盤上的單色3子棋,我們有確切值:1/17。對於其他更大的k,其介在1-16/k-o(k^(-1))和1-8/k+o(k^(-1))之間。對於超立方體棋盤,最小密度大致為1-2d/k+2d(d-1)/(k^2)±O(k^(-3))。

就最大密度而言,我們仍有平面棋盤上單色3子棋的確切值:1/5。對於不是3的倍數的k,其等於1-2/k。對於剩餘的k,上下界非常相近,其值介於1-2/(k-1)和1-2/k之間。超立方體的則是1-2/k-O(k^(-2))。
We introduce a variant of k in a row: On a given board, each of players claims a position in turns until there is a k in a row among all claimed positions. The difference to the original k in a row is that, in this variant, a player no longer needs to claim a full k in a row by themself to win the game; instead, claiming the last remaining position of a k in a row is sufficient.

We are curious about how long a game can last, or, equivalently, how dense a final board configuration can be. Likewise, we concern how sparse a configuration can be. We ask the same questions for various boards, say the infinite plane board and the hypercubes [k]^d for every d∈N. To answer it, we give bounds on the maximum and minimum densities configurations.

Speaking minimum density, on the infinite plane board, we have the exact answer, 1/17, when k=3. For other k, the minimum density is between 1-16/k-o(k^(-1)) and 1-8/k+o(k^(-1)). On the hypercube [k]^d, it is around 1-2d/k+2d(d-1)/(k^2)±O(k^(-3)).

Speaking maximum density, we still have the exact answer for the plane board when k=3, which is 1/5. For other k with 3∤k, it is exactly 1-2/k. For other multiple of 3, it is between 1-2/(k-1) and 1-2/k. On the hypercube, it is around 1-2/k-O(k^(-2)).
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97526
DOI: 10.6342/NTU202501210
Fulltext Rights: 同意授權(全球公開)
metadata.dc.date.embargo-lift: 2025-07-03
Appears in Collections:數學系

Files in This Item:
File SizeFormat 
ntu-113-2.pdf4.51 MBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved