Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97341
Title: 基於多尺度技術的穩態熱分析域分解方法
Domain Decomposition Method for Steady-State Thermal Analysis with Multiscale Technique
Authors: 陳穎君
Ying-Chun Chen
Advisor: 陳中平
Chung-Ping Chen
Keyword: 有限元素法,域分解法,數值方法,熱分析,三維積體電路,先進封裝,
Finite Element Method,Domain Decomposition Method,Numerical Analysis,Thermal Analysis,3DIC,Advanced Packaging,
Publication Year : 2025
Degree: 碩士
Abstract: 本論文針對現代超大規模積體電路(VLSI)設計中所面臨的熱模擬挑戰提出了一套解決方案。隨著積體電路在結構複雜度與功率密度上的不斷提升,傳統熱分析方法因記憶體需求過大與運算時間過長而變得效率低下。為克服此一瓶頸,本研究引入基於域分解與多尺度技術的新穎框架,將整體熱問題拆分為數個可獨立計算的子域分別計算,降低峰值記憶體用量。模擬結果顯示,與傳統有限元素分析相比,所提出之求解器在記憶體使用量上可減少 7.79 倍,同時在誤差極小的前提下維持高準確度。此外,運算效能的顯著提升,亦使得包含數百萬元素之IC封裝模擬成為可能。
本論文另一項核心貢獻在於構建了一個具高度彈性的元方法(meta-method)框架,容許以不同方法替換核心有限元素求解器,例如整合商用電子設計自動化(EDA)工具或基於機器學習的偏微分方程求解器,以進一步提升整體效能。本論文的多樣化策略不僅加速了迭代求解過程的收斂,亦為未來整合更多物理現象(如電行為與機械應力)於多物理場模擬中奠定了堅實基礎。
This thesis presents a solution to the thermal simulation challenges inherent in modern VLSI design. As integrated circuits grow in complexity and power density, traditional thermal analysis methods become inefficient due to excessive memory requirements and prolonged runtimes. To overcome these limitations, this work introduces a novel framework based on domain decomposition and multiscale techniques that partitions the global thermal problem into manageable subdomains. Simulation results demonstrate that the proposed solver achieves a 7.79× reduction in memory usage compared to conventional finite element analysis, while maintaining high accuracy with minimal error. In addition, significant improvements in runtime performance enable efficient simulation of IC packages comprising millions of elements.
A key contribution of this thesis is the development of a flexible, meta-method framework that supports the replacement of the core finite element solver with alternative approaches, such as commercial EDA tools or machine learning–based PDE solvers, to further enhance performance. This versatility not only accelerates the convergence of the iterative solution process but also opens the door to integrating additional physical phenomena, such as electrical behavior and mechanical stress, in future multiphysics simulations.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97341
DOI: 10.6342/NTU202500854
Fulltext Rights: 未授權
metadata.dc.date.embargo-lift: N/A
Appears in Collections:電子工程學研究所

Files in This Item:
File SizeFormat 
ntu-113-2.pdf
  Restricted Access
17.59 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved