Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97336| Title: | 應用於射頻及毫米波傳輸電路和系統設計與實現以及毫米波互補式金氧半場效電晶體功率放大器設計之研究 Research on Transceiver Circuit and System Design and Implementation in RF and Millimeter-Wave Application and Millimeter-Wave Power Amplifier Design in CMOS |
| Authors: | 吳源深 Yuen-Sum Ng |
| Advisor: | 王暉 Huei Wang |
| Keyword: | 互補式金氧半場效電晶體,收發器,毫米波,功率放大器,覆晶封裝技術,鰭式場效電晶體,E-頻段,W-頻段,Ka-頻段, CMOS,transceiver,millimeter-wave,power amplifier,flip-chip package,FinFET,E-band,W-band,Ka-band, |
| Publication Year : | 2025 |
| Degree: | 博士 |
| Abstract: | 本論文聚焦於射頻和毫米波(mmW)電路,系統和整合上的研究。本論文分為兩大部份,第一主部份介紹一個適用於39 GHz應用的2.2公里高速收發系統,第二主部份為應用於毫米波系統上的功率放大器(power amplifier)的研究。
本論文的第一主部份為一個於39-GHz 波段下的2.2公里高速無線傳輸系統。該系統包括使用 TX/RX 晶片並利用覆晶技術安裝在 IC 封裝基板上的發射器(TX)和接收器(RX)模組,這些模組是使用TX/RX晶片並利用覆晶技術安裝在IC封裝基板上,一對高增益主動天線,以及用於數據到圖形轉換的軟體定義無線電(Software-Defined Radio, SDR)模組。TX和RX主動天線都提供高達37 dB的天線增益(Antenna Gain)。使用覆晶技術組裝的TX模組提供15 dBm的飽和功率(Saturated Power, Psat)和13 dB的轉換增益(Conversion Gain, CG),而使用覆晶技術封裝的RX模組則提供18 dB 轉換增益。該即時視頻系統的特性已在戶外展示,這是首次實現公里等級距離的無人機應用39 GHz長距離傳輸。 本論文的第二主部份介紹了毫米波功率放大器的設計,這部份分別為展別展示兩個應用於$E$頻段和$W$頻段的段功率放大器(PA),該放大器採用16奈米鰭式場效電晶體(FinFET)技術製作,電晶體的轉換頻率(Transition frequency, fT)和最大振盪頻率(Maximum oscillation frequency, fmax) 分別為332 GHz和235 GHz。這個功率放大器採用低功耗設計方法,並且經過審慎的佈局設計,顯著減少了晶片面積。這種方法適合於相控陣系統中單端功率放大器的使用,特別是自動雷達應用,該應用需要在數位主導的FinFET技術中提供優越的性能。此功率放大器利用變壓器耦合技術進行級間連接,並採用緊湊的佈局技術,使功率放大器適合於毫米波(mmW)應用。該功率放大器在0.8 V的較低供電電壓和120 mA的電流消耗下,提供12-dBm 的Psat,22-dB的轉換增益,以及20.2%的功率增益效率(PAE)。功率放大器的核心晶片尺寸為525微米 x 310微米。 另一個毫米波功率放大器為一個使用65奈米CMOS製程製作的E頻段功率放大器,電晶體的ft$和fmax分別為281 GHz和196 GHz。這款功率放大器採用三級設計方法,使用共源共柵結構來擴展供電電壓以提高輸出功率。利用2路功率結合技術進一步提高輸出功率。此功率放大器利用變壓器耦合技術進行級間連接,並採用緊湊的佈局技術,使功率放大器適合於mmW應用。該功率放大器在1.2 V和2.4 V的多重供電電壓和150 mA及220 mA的電流消耗下,顯示了20.7-dBm的Psat,26.8-dB的增益,以及17.5%的PAE。功率放大器的核心晶片尺寸為800微米 x 360微米。 This dissertation focuses on the research of the RF and millimeter-wave circuit design and system architecture investigation. The dissertation comprises two main parts: the first part concentrates on the long-range millimeter-wave circuit system design, and the second part shows the research on the design of power amplifiers in millimeter-wave transmission systems. In the first part of this dissertation, a 2.2-km high-speed transceiver system for 39 GHz applications is presented. The system includes transmitter (TX) and receiver (RX) modules, which are developed from TX/RX chips and flip-chip mounted on an IC package substrate, a pair of high-gain active antennas, and software-defined radio (SDR) modules for data-to-image conversion. Both the TX and RX active antenna provide up to 37 dB antenna gain. The presented flip-chip TX provides 15 dBm of saturated power and 13 dB of conversion gain (CG), while the flip-chip RX delivers 18 dB of CG. The real-time video system’s characteristics have been demonstrated outdoors, the first demonstration of a kilometer-scale long-range transmission at 39 GHz in UAV applications. The second part of this dissertation investigates the power amplifier design in millimeter-wave applications. Two PA designs in E-band and W-band PA are presented, respectively. The first PA focuses on the design of a low-supply voltage W-band power amplifier (PA) fabricated in 16-nm FinFET technology with transition frequency (fT) and maximum oscillation frequency (fmax) of 332 and 235 GHz, respectively. This PA adopts the low-power design approach, with a careful layout strategy to substantially reduce the occupied area. This approach suits the usage of single-end PA in phased-array systems, especially the automatic radar application, which requires superb performance in the digitally dominated fin field-effect transistor (FinFET) technology. This PA exploits the transformer coupling technique for inter-stage connection and compact layout techniques to make the PA suitable for millimeter-wave (mmW) applications. The PA provides a 12-dBm saturated output power (Psat), 22 dB transducer gain, and 20.2% of power-added efficiency (PAE) under a lower supply voltage of 0.8 V and current consumption of 120 mA. The PA occupies a core die size of 525 μm × 310 μm. Another millimeter-wave PA presented in this dissertation is a high-output power amplifier using the parallel power combining technique for E-band system. This E-band power amplifier (PA) is fabricated in 65-nm CMOS technology with transition frequency (fT) and maximum oscillation frequency (fmax) of 281 and 196 GHz, respectively. This PA adopts a three-stage design approach, using the cascade structure to extend the supply voltage to boost the output power. The 2-way power combining technique is exploited to further improve the output power. This PA exploits the transformer coupling technique for inter-stage connection and compact layout techniques to make the PA suitable for millimeter-wave (mmW) applications. The PA provides a 20.7-dBm saturated output power (Psat), 26.8 dB transducer gain, and 17.5% of power-added efficiency (PAE) at 75 GHz under a multiple supply voltage of 1.2 and 2.4 V and current consumption of 150 mA and 220 mA respectively. The PA occupies a core die size of 800 μm × 360 μm. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97336 |
| DOI: | 10.6342/NTU202500024 |
| Fulltext Rights: | 同意授權(限校園內公開) |
| metadata.dc.date.embargo-lift: | 2025-05-02 |
| Appears in Collections: | 電信工程學研究所 |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-113-1.pdf Access limited in NTU ip range | 34.05 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
