Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96877
Title: 透過轉印技術實現近紅外光有機發光二極體性能突破:機制、材料與元件探討
Achieving Performance Breakthroughs in NIR-OLEDs through Transfer Printing Technique: Mechanism, Materials, and Device Investigation
Authors: 涂凱硯
Kai-Yen Tu
Advisor: 周必泰
Pi-Tai Chou
Keyword: 近紅外有機發光二極體,界面能量轉移,轉印技術,鉑金屬配合物,Y 系列材料,螢光,
NIR OLED,Interfacial energy transfer,Stamping,Pt complex,Y-series materials,fluorescence,
Publication Year : 2024
Degree: 碩士
Abstract: 近年來近紅外光有機發光二極體被廣泛討論,而此類元件在能量間隔定律的限制下無法達到高效率。本研究致力於利用介面能量轉移來提升有機發光二極體元件表現。
本研究將轉印技術引入近紅外光有機發光二極體元件的製備。透過將近紅外螢光染料 BTP-eC9 轉印於 Pt(II) 錯合物的薄膜上達到介面能量轉移的效果。 BTP-eC9 為放光在 740 奈米的磷光材料,而 Pt(II) 錯合物為放光大於 900 奈米的螢光材料。在使用轉印技術的雙層結構中,可以觀察出 Pt(II) 錯合物放出的磷光,有效地進行三重態到單重態的能量轉移至 BTP-eC9,並在放光位置大於 900 奈米有高強度螢光。我們最後得到放光在 925 奈米的元件,並達到外部電子效率 2.24%(1.94 ± 0.18%),並在亮度上達到39.97 W sr−1 m−2。表面型態鑑定、元件及光譜分析也被用來證明其能量轉移的機制。總結而言,透過轉印技術達成能量轉移來製備有機發光二極體元件,將可以被廣泛應用並提供螢光 OLED 發展的前景。
In recent years, near-infrared organic light-emitting diodes (NIR OLEDs) have gained considerable attention; however, these devices face efficiency limitations due to the energy gap law. This study aims to enhance OLED device performance through interfacial energy transfer.
A transfer printing technique was introduced in the fabrication of NIR OLEDs. By imprinting the NIR fluorescent dye BTP-eC9 onto a thin film of Pt(II) complex, effective interfacial energy transfer was achieved. BTP-eC9 is a phosphorescent material with emission at 740 nm, while the Pt(II) complex emits fluorescence at wavelengths above 900 nm. In the dual-layer architecture enabled by transfer printing, phosphorescence from the Pt(II) complex effectively undergoes triplet-to-singlet energy transfer to BTP-eC9, resulting in high-intensity fluorescence beyond 900 nm. Ultimately, the device emitted at 925 nm, achieving an external quantum efficiency (EQE) of 2.24% (1.94 ± 0.18%) and a peak radiance of 39.97 W sr−1 m−2. Surface morphology, device analysis, and spectroscopic studies confirmed the energy transfer mechanism. In summary, this energy-transfer approach via transfer printing provides a promising outlook for the development of hyperfluorescent OLEDs in the NIR region.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96877
DOI: 10.6342/NTU202500040
Fulltext Rights: 未授權
metadata.dc.date.embargo-lift: N/A
Appears in Collections:化學系

Files in This Item:
File SizeFormat 
ntu-113-1.pdf
  Restricted Access
3.61 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved