請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96877完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周必泰 | zh_TW |
| dc.contributor.advisor | Pi-Tai Chou | en |
| dc.contributor.author | 涂凱硯 | zh_TW |
| dc.contributor.author | Kai-Yen Tu | en |
| dc.date.accessioned | 2025-02-24T16:22:18Z | - |
| dc.date.available | 2025-02-25 | - |
| dc.date.copyright | 2025-02-24 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2025-01-10 | - |
| dc.identifier.citation | (1) Bauri, J.; Choudhary, R. B.; Mandal, G. Recent advances in efficient emissive materials-based OLED applications: a review. Journal of Materials Science 2021, 56 (34), 18837-18866.
(2) Tang, C. W.; VanSlyke, S. A. Organic electroluminescent diodes. Applied physics letters 1987, 51 (12), 913-915. (3) Kalyani, N. T.; Dhoble, S. Organic light emitting diodes: Energy saving lighting technology—A review. Renewable and Sustainable Energy Reviews 2012, 16 (5), 2696- 2723. (4) Kappaun, S.; Slugovc, C.; List, E. J. Phosphorescent organic light-emitting devices: working principle and iridium based emitter materials. International journal of molecular sciences 2008, 9 (8), 1527-1547. (5) Yersin, H. Highly efficient OLEDs with phosphorescent materials; John Wiley & Sons, 2008. (6) Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 2012, 492 (7428), 234-238. (7) Zampetti, A.; Minotto, A.; Cacialli, F. Near‐infrared (NIR) organic light‐emitting diodes (OLEDs): challenges and opportunities. Advanced Functional Materials 2019, 29 (21), 1807623. (8) Thimsen, E.; Sadtler, B.; Berezin, M. Y. Shortwave-infrared (SWIR) emitters for biological imaging: a review of challenges and opportunities. Nanophotonics 2017, 6 (5), 1043-1054. (9) Englman, R.; Jortner, J. The energy gap law for radiationless transitions in large molecules. Molecular Physics 1970, 18 (2), 145-164. (10) Maciejewski, A.; Safarzadeh-Amiri, A.; Verrall, R.; Steer, R. Radiationless decay of the second excited singlet states of aromatic thiones: experimental verification of the energy gap law. Chemical physics 1984, 87 (2), 295-303. (11) Würthner, F. Aggregation‐induced emission (AIE): a historical perspective. Angewandte Chemie International Edition 2020, 59 (34), 14192-14196. (12) Rosenow, T. C.; Walzer, K.; Leo, K. Near-infrared organic light emitting diodes based on heavy metal phthalocyanines. Journal of Applied Physics 2008, 103 (4). (13) Tuong Ly, K.; Chen-Cheng, R.-W.; Lin, H.-W.; Shiau, Y.-J.; Liu, S.-H.; Chou, P.-T.; Tsao, C.-S.; Huang, Y.-C.; Chi, Y. Near-infrared organic light-emitting diodes with very high external quantum efficiency and radiance. Nature Photonics 2017, 11 (1), 63-68. (14) Wei, Y.-C.; Wang, S. F.; Hu, Y.; Liao, L.-S.; Chen, D.-G.; Chang, K.-H.; Wang, C.-W.; Liu, S.-H.; Chan, W.-H.; Liao, J.-L. Overcoming the energy gap law in near-infrared OLEDs by exciton–vibration decoupling. nature photonics 2020, 14 (9), 570-577. (15) Wang, S.-F.; Su, B.-K.; Wang, X.-Q.; Wei, Y.-C.; Kuo, K.-H.; Wang, C.-H.; Liu, S.-H.; Liao, L.-S.; Hung, W.-Y.; Fu, L.-W. Polyatomic molecules with emission quantum yields> 20% enable efficient organic light-emitting diodes in the NIR (II) window. Nature Photonics 2022, 16 (12), 843-850. (16) Xie, Y.; Liu, W.; Deng, W.; Wu, H.; Wang, W.; Si, Y.; Zhan, X.; Gao, C.; Chen, X.-K.; Wu, H. Bright short-wavelength infrared organic light-emitting devices. Nature Photonics 2022, 16 (11), 752-761. (17) Chittawanij, A.; Locharoenrat, K. Characteristic Evaluation of Organic Light‐ Emitting Diodes Prepared with Stamp Printing Technique. Advances in Condensed Matter Physics 2017, 2017 (1), 2414798. (18) Zhou, H.; Qin, W.; Yu, Q.; Cheng, H.; Yu, X.; Wu, H. Transfer printing and its applications in flexible electronic devices. Nanomaterials 2019, 9 (2), 283. (19) Qin, M.; Chan, P. F.; Lu, X. A systematic review of metal halide perovskite crystallization and film formation mechanism unveiled by in situ GIWAXS. Advanced Materials 2021, 33 (51), 2105290. (20) Kwan, C.-P.; Street, M.; Mahmood, A.; Echtenkamp, W.; Randle, M.; He, K.; Nathawat, J.; Arabchigavkani, N.; Barut, B.; Yin, S. Space-charge limited conduction in epitaxial chromia films grown on elemental and oxide-based metallic substrates. AIP Advances 2019, 9 (5). (21) Jiang, K.; Zhang, J.; Zhong, C.; Lin, F. R.; Qi, F.; Li, Q.; Peng, Z.; Kaminsky, W.; Jang, S.-H.; Yu, J. Suppressed recombination loss in organic photovoltaics adopting a planar– mixed heterojunction architecture. Nature Energy 2022, 7 (11), 1076-1086. (22) Wang, R.; Zhang, C.; Li, Q.; Zhang, Z.; Wang, X.; Xiao, M. Charge separation from an intra-moiety intermediate state in the high-performance PM6: Y6 organic photovoltaic blend. Journal of the American Chemical Society 2020, 142 (29), 12751-12759. (23) Xu, X.; Jing, W.; Meng, H.; Guo, Y.; Yu, L.; Li, R.; Peng, Q. Sequential deposition of multicomponent bulk heterojunctions increases efficiency of organic solar cells. Advanced Materials 2023, 35 (12), 2208997. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96877 | - |
| dc.description.abstract | 近年來近紅外光有機發光二極體被廣泛討論,而此類元件在能量間隔定律的限制下無法達到高效率。本研究致力於利用介面能量轉移來提升有機發光二極體元件表現。
本研究將轉印技術引入近紅外光有機發光二極體元件的製備。透過將近紅外螢光染料 BTP-eC9 轉印於 Pt(II) 錯合物的薄膜上達到介面能量轉移的效果。 BTP-eC9 為放光在 740 奈米的磷光材料,而 Pt(II) 錯合物為放光大於 900 奈米的螢光材料。在使用轉印技術的雙層結構中,可以觀察出 Pt(II) 錯合物放出的磷光,有效地進行三重態到單重態的能量轉移至 BTP-eC9,並在放光位置大於 900 奈米有高強度螢光。我們最後得到放光在 925 奈米的元件,並達到外部電子效率 2.24%(1.94 ± 0.18%),並在亮度上達到39.97 W sr−1 m−2。表面型態鑑定、元件及光譜分析也被用來證明其能量轉移的機制。總結而言,透過轉印技術達成能量轉移來製備有機發光二極體元件,將可以被廣泛應用並提供螢光 OLED 發展的前景。 | zh_TW |
| dc.description.abstract | In recent years, near-infrared organic light-emitting diodes (NIR OLEDs) have gained considerable attention; however, these devices face efficiency limitations due to the energy gap law. This study aims to enhance OLED device performance through interfacial energy transfer.
A transfer printing technique was introduced in the fabrication of NIR OLEDs. By imprinting the NIR fluorescent dye BTP-eC9 onto a thin film of Pt(II) complex, effective interfacial energy transfer was achieved. BTP-eC9 is a phosphorescent material with emission at 740 nm, while the Pt(II) complex emits fluorescence at wavelengths above 900 nm. In the dual-layer architecture enabled by transfer printing, phosphorescence from the Pt(II) complex effectively undergoes triplet-to-singlet energy transfer to BTP-eC9, resulting in high-intensity fluorescence beyond 900 nm. Ultimately, the device emitted at 925 nm, achieving an external quantum efficiency (EQE) of 2.24% (1.94 ± 0.18%) and a peak radiance of 39.97 W sr−1 m−2. Surface morphology, device analysis, and spectroscopic studies confirmed the energy transfer mechanism. In summary, this energy-transfer approach via transfer printing provides a promising outlook for the development of hyperfluorescent OLEDs in the NIR region. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-24T16:22:18Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-24T16:22:18Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員議定書 ............................................................................................................... i
致謝 .................................................................................................................................. ii 中文摘要 ......................................................................................................................... iii Abstract............................................................................................................................ iv Content ............................................................................................................................. v List of Figures................................................................................................................. vii List of Tables .................................................................................................................... x Chapter 1 Introduction...................................................................................................... 1 1.1 Organic Light Emitting Diode (OLED) Development ....................................... 1 1.2 Energy gap law ................................................................................................... 5 1.3 Near-Infarad (NIR) OLED Development........................................................... 8 1.4 Pt complex as NIR OLED materials ................................................................ 10 1.5 Non-fullerene acceptors (NFAs) as NIR OLED materials............................... 14 1.6 Stamp technique used in device fabrication ..................................................... 16 1.7 Motivation ........................................................................................................ 18 Chapter 2 Experiment part.............................................................................................. 20 2.1 Experiment materials........................................................................................ 20 2.2 Device fabrication............................................................................................. 22 2.2.1 Substrate cleaning.................................................................................. 22 2.2.2 Y11/BTP-eC9 OLED Device Fabrication............................................. 22 2.2.3 Pt(fprpz)2 OLED Device Fabrication .................................................... 23 2.2.4 Pt(fprpz)2/NIR dye stamp OLED Device Fabrication........................... 23 2.3 Analyzing instruments...................................................................................... 24 2.3.1 Emitting layer thin film analysis ........................................................... 24 2.3.2 OLED device measurement................................................................... 27 2.4 Simulation method............................................................................................ 31 Chapter 3 Result and discussion..................................................................................... 32 3.1 Materials selection and their properties............................................................ 32 3.2 Interface interaction, surface morphology and carrier dynamics ..................... 38 3.2.1 Surface morphology comparison of films under different process ....... 38 3.2.2 Molecule stacking behavior................................................................... 40 3.2.3 Mechanism of interface energy transfer ................................................ 43 3.2.4 Carrier dynamics regarding the interfaces............................................. 44 3.3 OLED device performance and analysis .......................................................... 47 3.3.1 Single layer OLED charge transport behavior and device performance 47 3.3.2 Stamped OLED device performance..................................................... 51 Chapter 4 Conclusion ..................................................................................................... 58 Reference ........................................................................................................................ 59 | - |
| dc.language.iso | en | - |
| dc.subject | 鉑金屬配合物 | zh_TW |
| dc.subject | 界面能量轉移 | zh_TW |
| dc.subject | 近紅外有機發光二極體 | zh_TW |
| dc.subject | 轉印技術 | zh_TW |
| dc.subject | Y 系列材料 | zh_TW |
| dc.subject | 螢光 | zh_TW |
| dc.subject | fluorescence | en |
| dc.subject | NIR OLED | en |
| dc.subject | Interfacial energy transfer | en |
| dc.subject | Stamping | en |
| dc.subject | Pt complex | en |
| dc.subject | Y-series materials | en |
| dc.title | 透過轉印技術實現近紅外光有機發光二極體性能突破:機制、材料與元件探討 | zh_TW |
| dc.title | Achieving Performance Breakthroughs in NIR-OLEDs through Transfer Printing Technique: Mechanism, Materials, and Device Investigation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 洪文誼;陳協志 | zh_TW |
| dc.contributor.oralexamcommittee | Wen-Yi Hung;Hsieh-Chih Chen | en |
| dc.subject.keyword | 近紅外有機發光二極體,界面能量轉移,轉印技術,鉑金屬配合物,Y 系列材料,螢光, | zh_TW |
| dc.subject.keyword | NIR OLED,Interfacial energy transfer,Stamping,Pt complex,Y-series materials,fluorescence, | en |
| dc.relation.page | 60 | - |
| dc.identifier.doi | 10.6342/NTU202500040 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-01-10 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 化學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 未授權公開取用 | 3.61 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
