請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96168
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鄭原忠 | zh_TW |
dc.contributor.advisor | Yuan-Chung Cheng | en |
dc.contributor.author | 毛威凱 | zh_TW |
dc.contributor.author | Wei-Kai Mao | en |
dc.date.accessioned | 2024-11-19T16:08:06Z | - |
dc.date.available | 2024-11-20 | - |
dc.date.copyright | 2024-11-19 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-11-13 | - |
dc.identifier.citation | [1] C. Grant Willson, Ralph R. Dammel, and Arnost Reiser. Photoresist materials: a historical perspective. In Advances in Resist Technology and Processing XIV, volume 3050, pages 38–51, 1997.
[2] Muhammad Hassaan, Umama Saleem, Akash Singh, Abrar Jawad Haque, and Kaiying Wang. Recent advances in positive photoresists: Mechanisms and fabrication. Materials, 17:2552, 2024. [3] Theodore Manouras and Panagiotis Argitis. High sensitivity resists for euv lithography: A review of material design strategies and performance results. Nanomaterials, 10(8):1593, 2020. [4] Jinwon Park, Jaehong Lee, Seongsoo Han, Hyun-Ro Lee, and Siyoung Q. Choi. Removal analysis of residual photoresist particles based on surface topography affected by exposure times of ultraviolet and developer solution. Langmuir, 38(51):16134–16143, 2022. [5] Muyoung Kim, Junghwan Moon, Joonmyung Choi, Sungwoo Park, Byunghoon Lee, and Maenghyo Cho. Multiscale simulation approach on sub-10 nm extreme ultraviolet photoresist patterning: Insights from nanoscale heterogeneity of polymer. Macromolecules, 51(17):6922–6935, 2018. [6] Mingxing Wang, Cheng-Tsung Lee, Clifford L. Henderson, Wang Yueh, Jeanette M. Roberts, and Kenneth E. Gonsalves. Synthesis and properties of new anionic photoacid generators bound polymer resists for e-beam and EUV lithography. In Advances in Resist Materials and Processing Technology XXV, volume 6923, page 692312, 2008. [7] Florian Kaefer, Zoey Meng, Rachel Segalman, and Christopher K. Ober. Controlled sequence photoresists from polypeptoids. Journal of Photopolymer Science and Technology, 35(1):29–33, 2022. [8] X. Zoey Meng, Florian H. Käfer, Gregory M. Wallraff, Christopher K. Ober, and Rachel A. Segalman. Controlled sequence peptoids as photoresist platforms for high-resolution DUV/EUV photoresists. In International Conference on Extreme Ultraviolet Lithography 2022, volume 12292, page 122920Q, 2022. [9] Cameron P. Adams, Xiangxi Meng, Florian H. Kaefer, Chenyun Yuan, Christopher K. Ober, and Rachel A. Segalman. Sequence-defined polypeptoids as DUV and EUV chemically amplified resists. In International Conference on Extreme Ultraviolet Lithography 2023, volume PC12750, page PC127500J, 2023. [10] Muyoung Kim, Junghwan Moon, Sungwoo Park, and Maenghyo Cho. Selective dissolution resistance control of euv photoresist using multiscale simulation: Rational design of hybrid system. Macromolecules, 53(12):4748–4763, 2020. [11] Lei Guo and Erik Luijten. Reversible gel formation of triblock copolymers studied by molecular dynamics simulation. Journal of Polymer Science Part B: Polymer Physics, 43(8):959–969, 2005. [12] J. M. Haile. Molecular Dynamics Simulation: Elementary Methods. Wiley, New York, 1992. [13] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak. Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8):3684–3690, 1984. [14] Jean-Paul Ryckaert, Giovanni Ciccotti, and Herman Berendsen. Numericalintegration of cartesian equations of motion of a system with constraints–moleculardynamics of n-alkanes. Journal of Computational Physics, 23:327–341, 1977. [15] Michael Rubinstein and Ralph H. Colby. Polymer physics, 2003. [16] Rodolfo G. Pereyra and Marcelo A. Carignano. Molecular dynamics study of polymeric chemical gels: Effect of persistence length and crosslinker density. Journal of Polymer Science Part B: Polymer Physics, 57(19):1343–1350, 2019. [17] Loes M. J. Kroon-Batenburg, Peter H. Kruiskamp, Johannes F. G. Vliegenthart, and Jan Kroon. Estimation of the persistence length of polymers by md simulations on small fragments in solution. application to cellulose. The Journal of Physical Chemistry B, 101(42):8454–8459, 1997. [18] Handan Arkın and Wolfhard Janke. Gyration tensor based analysis of the shapes of polymer chains in an attractive spherical cage. The Journal of Chemical Physics, 138(5):54904, 2013. [19] Meilin Li and Stefan Adams. Molecular dynamics simulations of cation-controlled aggregation in fluorene–triarylamine copolymers. Journal of Polymer Science Part B: Polymer Physics, 54(10):965–974, 2016. [20] Matteo Paloni, Rémy Bailly, Luca Ciandrini, and Alessandro Barducci. Unraveling molecular interactions in liquid–liquid phase separation of disordered proteins by atomistic simulations. The Journal of Physical Chemistry B, 124(41):9009–9016, 2020. [21] Junmei Wang, Romain M. Wolf, James W. Caldwell, Peter A. Kollman, and David A. Case. Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9):1157–1174, 2004. [22] Wendy D. Cornell, Piotr Cieplak, Christopher I. Bayly, Ian R. Gould, Kenneth M. Merz, David M. Ferguson, David C. Spellmeyer, Thomas Fox, James W. Caldwell, and Peter A. Kollman. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. Journal of the American Chemical Society, 117(19):5179–5197, 1995. [23] Samira Anker, David McKechnie, Paul Mulheran, Jan Sefcik, and Karen Johnston. Assessment of gaff and opls force fields for urea: Crystal and aqueous solution properties. Crystal Growth & Design, 24(1):143–158, 2024. [24] Rahul Bhowmik, Sangwook Sihn, Vikas Varshney, Ajit K. Roy, and Jonathan P. Vernon. Calculation of specific heat of polymers using molecular dynamics simulations. Polymer, 167:176–181, 2019. [25] Christopher I. Bayly, Piotr Cieplak, Wendy Cornell, and Peter A. Kollman. A wellbehaved electrostatic potential based method using charge restraints for deriving atomic charges: the resp model. The Journal of Physical Chemistry, 97(40):10269–10280, 1993. [26] Oscar Parreño, Pablo Miguel Ramos, Nikos Ch. Karayiannis, and Manuel Laso. Selfavoiding random walks as a model to study athermal linear polymers under extreme plate confinement. Polymers, 12(4):2073–4360, 2020. [27] Franco Ormeño and Ignacio J. General. Convergence and equilibrium in molecular dynamics simulations. Communications Chemistry, 7(1):26, 2024. [28] George P. Patsis, Vassilios Constantoudis, and Evangelos Gogolides. Effects of photoresist polymer molecular weight on line-edge roughness and its metrology probed with monte carlo simulations. Microelectronic Engineering, 75:297–308, 2004. [29] Juhae Park, Sung-Gyu Lee, Yannick Vesters, Joren Severi, Myungwoong Kim, Danilo De Simone, Hye-Keun Oh, and Su-Mi Hur. Molecular modeling of euv photoresist revealing the effect of chain conformation on line-edge roughness formation. Polymers, 11(12):1923, 2019. [30] Pedro J. Rodríguez-Cantó, Ulrich Nickel, and Rafael Abargues. Understanding acid reaction and diffusion in chemically amplified photoresists: An approach at the molecular level. The Journal of Physical Chemistry C, 115(42):20367–20374, 2011. [31] Jin Bong Shin, Hyun Sang Joo, Seung Duk Cho, Hyun Soon Lim, Jin Ho Kim, Seung Jae Lee, Dae Hyeon Shin, JoonHee Han, and Dong Chul Seo. Study of acid diffusion of anionic or cationic polymer bound PAG. In Extreme Ultraviolet (EUV) Lithography II, volume 7969, page 79692N, 2011. [32] Ping-Jui Wu, Yu-Fu Wang, Wei-Chi Chen, Chien-Wei Wang, Joy Cheng, Vencent Chang, Ching-Yu Chang, John Lin, and Yuan-Chung Cheng. Nanoscale inhomogeneity and photoacid generation dynamics in extreme ultraviolet resist materials. In Advances in Patterning Materials and Processes XXXV, volume 10586, page 105861O, 2018. [33] Jolanta Tomaszewska, Tomasz Sterzyński, Aneta Woźniak-Braszak, and Michał Banaszak. Review of recent developments of glass transition in pvc nanocomposites. Polymers, 13(24):4336, 2021. [34] Anshuman Cherala and S. V. Sreenivasan. Molecular dynamics modeling framework for overcoming nanoshape retention limits of imprint lithography. Microsystems & Nanoengineering, 4(1):3, 2018. [35] Min Zhang, Zhiwei Cui, and Lynda Catherine Brinson. Mechanical properties of hard–soft block copolymers calculated from coarse-grained molecular dynamics models. Journal of Polymer Science Part B: Polymer Physics, 56(23):1552–1566, 2018. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96168 | - |
dc.description.abstract | 這篇論文透過分子動力學 (MD) 模擬研究了用於極紫外光 (EUV) 微影技術的化學增幅光阻 (CAR) 中聚合物架構與光致產酸劑 (PAG) 分佈的行為。通過對四種不同的CAR系統進行建模(包括自由和鍵合陰離子類型),本研究探討了不同聚合物結構如何影響化學分佈的均勻性。通過對徑向分佈函數 (RDF)、數密度分佈和離子的空間分群的分析,其結果顯示鍵合陰離子能夠減少陰離子和陽離子的聚集,從而提高技術的穩定性。此外,對聚合物剛性和可動性的研究表明,較剛性的聚合物單元會限制整個系統的可動性。這些發現為優化下一代半導體製造中的CAR配方提供了重要的見解,特別是在圖形解析度的方面。 | zh_TW |
dc.description.abstract | This thesis investigates the behavior of polymer architecture and PAG distribution in CARs for EUV photolithography through MD simulations. By modeling four distinct CAR systems, including free and bonded-anion types, this study explores how different polymer structures influence the uniformity of chemical distribution. Through the analysis of RDFs, number density distributions, and ion clustering behavior, the results show that bonded anions reduce aggregation in both anions and cations, enhancing material stability. Additionally, studies of polymer rigidity and mobility reveal that more rigid polymer units limit the mobility of overall system. These findings offer critical insights into the optimization of CAR formulations for next-generation semiconductor manufacturing, especially in feature resolution and pattern fidelity. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-11-19T16:08:06Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-11-19T16:08:06Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i
Acknowledgements iii 摘要v Abstract vii Contents ix List of Figures xiii List of Tables xv Denotation xvii Chapter 1 Introduction 1 1.1 Semiconductor Photolithography . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Functions of photoresists . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.2 Overview of chemically amplified resist . . . . . . . . . . . . . . . 4 1.2 Chemically Amplified Resist in EUV Photolithography . . . . . . . . 5 1.3 Overview of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . 6 Chapter 2 Theoretical Background for Molecular Dynamics Simulations 9 2.1 Periodic Boundary Condition . . . . . . . . . . . . . . . . . . . . . 9 2.2 Development of Force Field . . . . . . . . . . . . . . . . . . . . . . 10 2.2.1 Bonded interactions . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.2 Non-bonded interactions . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 Equation of Motion in MD . . . . . . . . . . . . . . . . . . . . . . . 13 2.4 Thermostat and Barostat . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4.1 Thermostat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4.2 Barostat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Chapter 3 Mathematical Methods for Analysing Polymers and PAGs 19 3.1 Polymer Structures Analysis . . . . . . . . . . . . . . . . . . . . . . 19 3.1.1 Polymer models and parameters . . . . . . . . . . . . . . . . . . . 19 3.1.2 Polymer shape identification using gyration tensor matrix . . . . . . 22 3.2 Methods for PAG Distribution Examination . . . . . . . . . . . . . . 24 3.2.1 Radial distribution function . . . . . . . . . . . . . . . . . . . . . . 24 3.2.2 Coordination number . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2.3 Analysis of Moran’s I . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2.4 Ion clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.3 Mean square displacement and diffusion coefficient . . . . . . . . . . 27 Chapter 4 MD Simulations 29 4.1 Model CAR Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.2 GAFF for CAR simulation . . . . . . . . . . . . . . . . . . . . . . . 31 4.2.1 Atom types in CAR models . . . . . . . . . . . . . . . . . . . . . . 32 4.2.2 RESP determination of atomic partial charges . . . . . . . . . . . . 33 4.3 Initial Structure Preparation . . . . . . . . . . . . . . . . . . . . . . 38 4.3.1 Polymer matrix formation from gas phase matrix . . . . . . . . . . 39 4.3.2 Simulated annealing of polymer matrix . . . . . . . . . . . . . . . . 40 4.4 Verification for Equilibrium State . . . . . . . . . . . . . . . . . . . 41 4.5 Procedure for Production Run . . . . . . . . . . . . . . . . . . . . . 43 Chapter 5 Structural Analysis of EUV CAR Polymers 47 5.1 Rigidity of Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.1.1 End-to-end distance of CAR polymers . . . . . . . . . . . . . . . . 48 5.1.2 Persistence length of CAR polymers . . . . . . . . . . . . . . . . . 49 5.2 Temperature Dependency of Polymer Shape . . . . . . . . . . . . . . 51 5.2.1 Characterization of the shape of CAR polymers . . . . . . . . . . . 51 5.2.2 Shape description from gyration-tensor analysis . . . . . . . . . . . 53 Chapter 6 PAG Distribution in Polymer Matrix 59 6.1 Cation-anion Interactions . . . . . . . . . . . . . . . . . . . . . . . . 60 6.1.1 Radial distribution of cation-anion coordination . . . . . . . . . . . 60 6.1.2 Coordination number of cation-anion . . . . . . . . . . . . . . . . 62 6.2 Local Density Distribution of PAG . . . . . . . . . . . . . . . . . . . 66 6.2.1 Phase separation due to high temperature . . . . . . . . . . . . . . . 66 6.2.2 Ideal distribution and simulated distribution of anions . . . . . . . . 68 6.2.3 Characterization of distribution homogeneity . . . . . . . . . . . . 72 6.3 Polymer-PAG Interaction . . . . . . . . . . . . . . . . . . . . . . . . 74 Chapter 7 Mobility of Chemicals in CAR 79 7.1 Diffusion of PAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 7.2 Flexibility of Polymer . . . . . . . . . . . . . . . . . . . . . . . . . 81 7.3 Glass Transition Temperature of CAR Polymers . . . . . . . . . . . 85 Chapter 8 Conclusion 89 References 91 | - |
dc.language.iso | en | - |
dc.title | 以分子動力學模擬極紫外光微影的化學放大光阻 | zh_TW |
dc.title | Exploring Polymer Architecture and PAG Behavior in EUV Chemically Amplified Resists Using MD Simulations | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 金必耀;許良彥;趙聖德 | zh_TW |
dc.contributor.oralexamcommittee | Bi-Yao Jin;Liang-Yan Xu;Sheng-Der Chao | en |
dc.subject.keyword | 分子動力學,化學增強光阻,極紫外光微影,聚合物結構,光致產酸劑,離子空間分群, | zh_TW |
dc.subject.keyword | Molecular Dynamics,Chemically Amplified Resist,EUV Lithography,Polymer Architecture,Photoacid Generator,Ion Clustering, | en |
dc.relation.page | 96 | - |
dc.identifier.doi | 10.6342/NTU202404559 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-11-13 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 化學系 | - |
顯示於系所單位: | 化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-1.pdf | 8.2 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。