Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9593
Title: 點集合影片資料庫中封閉性樣式之資料探勘
Mining Closed Patterns in Pointset Video Databases
Authors: Yi-Yu Lai
賴奕伃
Advisor: 李瑞庭
Keyword: 資料探勘,點集合影片資料庫,封閉性樣式,頻繁樣式,
data mining,pointset video database,closed pattern,frequent pattern,
Publication Year : 2008
Degree: 碩士
Abstract: 隨著多媒體影像技術的蓬勃發展,多媒體資料量快速地遽增,如何從龐大的多媒體資料中找到有意義的資訊和特性已成為熱門的研究議題。我們可以將影片中發生的一個事件視為一個連續的點集合,而找到影片資料庫中由點集合所構成的封閉性樣式,則可以表達出影片中發生該事件的特性。因此,在本論文中,我們提出一個有效率的探勘演算法「CVP」來探勘出影片資料庫中的封閉性樣式。我們所提出的演算法主要先利用兩種資料結構儲存頻繁樣式的資訊,以深度優先搜尋的方式先對空間維度、再對時間維度產生出可能的頻繁樣式,最後再利用我們所提出的方法來修剪不符合或不必要的樣式以及判斷其封閉性。我們的演算法利用投影資料庫去產生可能的樣式和進行修剪,並不需要重複地搜尋整個影片資料庫,因此效率能夠得到明顯的改善。在人造及真實資料庫的實驗結果中顯示我們所提出的方法較改良式Apriori的方法來得更有效率。
Nowadays, the number of multimedia datasets is increasing rapidly. Thus, mining implicit and meaningful patterns from multimedia databases has attracted more and more attention in recent years. The event object can be viewed as a sequence of pointsets in a video. Mining closed patterns in pointset video databases can help us understand the pattern of an event in video databases. In this thesis, we first devise two data structures, called rplist and CV-tree, to store the information of frequent video patterns. Next, we propose a novel algorithm, called CVP, to mine frequent closed patterns from a video database in a depth-first search (DFS) manner. Our proposed algorithm consists of two phases. We first grow frequent video patterns in the spatial dimension and then grow them in the temporal dimension. To efficiently mine frequent closed patterns, we develop several pruning strategies to prune non-closed patterns. The CVP algorithm can localize the candidate generation, pattern join, and support counting in a small amount of rplists. Therefore, it can efficiently mine frequent closed patterns in a video database. The experiment results show that our proposed method outperforms modified Apriori algorithm in synthetic data and real data.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9593
Fulltext Rights: 同意授權(全球公開)
Appears in Collections:資訊管理學系

Files in This Item:
File SizeFormat 
ntu-97-1.pdf492.52 kBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved