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論文摘要 

 

論文題目：點集合影片資料庫中封閉性樣式之資料探勘 

作者：賴奕伃                                   九十七年七月 

指導教授：李瑞庭 博士 

 

隨著多媒體影像技術的蓬勃發展，多媒體資料量快速地遽增，如何從龐大的

多媒體資料中找到有意義的資訊和特性已成為熱門的研究議題。我們可以將影片

中發生的一個事件視為一個連續的點集合，而找到影片資料庫中由點集合所構成

的封閉性樣式，則可以表達出影片中發生該事件的特性。因此，在本論文中，我

們提出一個有效率的探勘演算法「CVP」來探勘出影片資料庫中的封閉性樣式。

我們所提出的演算法主要先利用兩種資料結構儲存頻繁樣式的資訊，以深度優先

搜尋的方式先對空間維度、再對時間維度產生出可能的頻繁樣式，最後再利用我

們所提出的方法來修剪不符合或不必要的樣式以及判斷其封閉性。我們的演算法

利用投影資料庫去產生可能的樣式和進行修剪，並不需要重複地搜尋整個影片資

料庫，因此效率能夠得到明顯的改善。在人造及真實資料庫的實驗結果中顯示我

們所提出的方法較改良式 Apriori 的方法來得更有效率。 

 

關鍵詞：資料探勘、點集合影片資料庫、封閉性樣式、頻繁樣式 
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Mining Closed Patterns in Pointset Video Databases 
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ADVISOR: Anthony J. T. Lee, Ph.D. 

 

Nowadays, the number of multimedia datasets is increasing rapidly. Thus, 

mining implicit and meaningful patterns from multimedia databases has attracted 

more and more attention in recent years. The event object can be viewed as a 

sequence of pointsets in a video. Mining closed patterns in pointset video databases 

can help us understand the pattern of an event in video databases. In this thesis, we 

first devise two data structures, called rplist and CV-tree, to store the information of 

frequent video patterns. Next, we propose a novel algorithm, called CVP, to mine 

frequent closed patterns from a video database in a depth-first search (DFS) manner. 

Our proposed algorithm consists of two phases. We first grow frequent video patterns 

in the spatial dimension and then grow them in the temporal dimension. To efficiently 

mine frequent closed patterns, we develop several pruning strategies to prune 

non-closed patterns. The CVP algorithm can localize the candidate generation, pattern 

join, and support counting in a small amount of rplists. Therefore, it can efficiently 

mine frequent closed patterns in a video database. The experiment results show that 

our proposed method outperforms modified Apriori algorithm in synthetic data and 

real data. 

Keywords: data mining, pointset video database, closed pattern, frequent pattern 
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Chapter 1  Introduction 

With advances in information technologies, a large amount of videos have 

been collected into video databases. Thus, the approaches of mining useful patterns 

from video databases have been attracted more and more attention in recent years. If 

we known what patterns often happen in the videos, we will know what situations 

often occur and to what we should pay attention. For example, we put a video camera 

on corridor in a hospital to collect how the patients walk. Many videos will be 

collected into a video database. By mining frequent patterns in such a database, we 

could know the pattern of normal walk of patients and abnormal ones, like patients 

falling down to the ground. If a patient falls down to the ground, an alarm will be 

raised to notify the workers in the first-aid station. If we can know the pattern of 

patients falling down in the video database, it could help a monitoring system to 

detect this event automatically, and inform the first-aid station immediately. We can 

also detect other kinds of movement patterns of human beings to achieve some 

purpose of security protection. For instance, if we can obtain the patterns of the action 

of throwing, it is helpful to avoid some violent behaviors such as throwing a grenade 

or other weapons.  

A pattern is frequent if it satisfies the user-specified minimum support. There 

are many kinds of frequent patterns, including itemsets, subsequences, substructures, 

etc. A frequently-occurring subsequence, such as the pattern that customers tend to 

purchase first a PC, followed by a digital camera, and then a memory card, is also 

called a sequential pattern. Sequential pattern mining, which discovers frequent 

subsequences in a sequence database, is a critical data mining problem with board 

applications, including the analyses of customer purchase behavior, Web access 

patterns, scientific experiments, DNA sequences, and so on.  

Many sequential mining methods have been proposed. Agrawal et al. [1] 
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proposed an Apriori method, which adopts a generate-and-test approach to mine 

sequential patterns. The major approaches of mining a complete set of sequential 

patterns include SPAM [2], GSP [16], SPADE [20], GO-SPADE [10] and PrefixSpan 

[14]. GSP [16] uses the downward-closure property of sequential patterns and adopts 

the candidate generate-and-test approach to mine sequential patterns. SPADE [20] and 

GO-SPADE [10] devises a divide-and-conquer strategy to implement the sequential 

patterns mining with a vertical data format. SPAM [2] exploits a vertical bitmap 

structure to count supports efficiently. However, the Apriori-based methods would 

generate many redundant candidates and require multiple database scans. Thus, Han 

et al. [4] designed the FP-growth method to mine frequent itemsets without candidate 

generation. Han et al. [5] proposed the FreeSpan method, which recursively projects a 

sequential database into projected databases, and generates frequent sequential 

patterns from these projected databases. PrefixSpan [14] mines the complete set of 

patterns but greatly reduces the efforts of candidate subsequence generation. 

Moreover, using prefix-projection can substantially reduces the size of projected 

databases and leads to mining the patterns efficiently.  

Many methods have been proposed to mine frequent subgraphs. Inokuchi et al. 

[7] proposed an AGM method to represent a graph as an “adjacency matrix” and mine 

them with an Apriori-based approach. Kuramochi et al. [9] presented an FSG method 

based on the Apriori algorithm, which uses a sparse graph representation to minimize 

storage space and computation time and has various optimization techniques for 

candidate generations. Yan et al. [19] developed a depth-first search algorithm, gSpan, 

to mine frequent subgraphs without candidate generations, where the DFS 

lexicographic order and minimum DFS code are used to represent a graph. Huan et al. 

[6] designed a candidate subgraph enumeration scheme, called FFSM, to mine 

frequent subgraphs. Wang et al. [8] proposed a method that eliminates some vertices 

in a path of a graph which can keep the topology structures in the graph and also 

reduce the search space to increase the mining efficiency. 
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Instead of mining all frequent itemsets, Pasquier et al. [12] introduced a new 

concept to mine the frequent closed itemsets. A frequent itemset is closed if there does 

not exist any super-itemset with the same support. However, the number of closed 

itemsets must be not greater than that of frequent itemsets in the database and frequent 

closed itemsets mined can be used to generate a complete set of frequent itemsets [12]. 

Generally speaking, mining closed itemsets is more efficiently than mining all 

frequent itemsets [12]. A-CLOSE [12] exploits the Apriori property to find closed 

itemsets. CLOSET [13] and CLOSET+ [18] uses the FP-tree as a compact data 

structure and mines frequent closed itemsets by projected databases. CHARM [21] 

uses an itemset-tidset search tree and applies a diffset technique to increase its 

performance. DCI_CLOSED [11] can detect and discard the duplicate closed itemsets 

without the need of keeping the closed itemsets mined in main memory. Singh et al. 

[15] proposed the CloseMiner algorithm to mine closed itemsets where they 

considered the frequent closed itemset mining problem as the problem of clustering 

the complete set of itemsets with closed tidsets. Uno et al. [17] developed the LCM 

algorithm, which organizes the closed itemsets into a tree structure and mines them in 

a depth-first search manner. Cheng et al. [3] proposed an algorithm to mine 

δ-tolerance frequent closed itemsets (δ-TCFIs) in order to reduce the number of 

closed itemsets. 

However, the itemset mining methods proposed cannot use to mine the 

patterns in video databases. The sequential mining methods do not consider the spatial 

attribute in the video patterns. The graph mining methods cannot be used to mine the 

patterns in video databases because they do not consider the temporal attribute. 

Therefore, the itemset mining, sequential mining and graph mining methods are not 

suitable to mine frequent closed patterns in video databases.  

Therefore, in this thesis, we first devise two data structures, called rplist and 

CV-tree, to store the information of frequent video patterns. Next, we propose a novel 

algorithm, called CVP, to mine frequent closed patterns from a video database in a 
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depth-first search (DFS) manner. Our proposed algorithm consists of two phases. We 

first grow frequent video patterns in the spatial dimension and then grow them in the 

temporal dimension. To efficiently mine frequent closed patterns, we develop several 

pruning strategies to prune non-closed patterns. By exploiting the CV-tree and rplists 

to store the information of frequent video patterns, the CVP algorithm can localize the 

candidate generation, pattern join, and support counting in a small amount of rplists. 

Therefore, it can efficiently mine frequent closed patterns in a video database.  

The contributions of this thesis are summarized as follows: (1) We first devise 

two data structures, called rplist and CV-tree, to store the information of frequent 

video patterns. (2) We propose a novel algorithm, called CVP, to mine frequent closed 

patterns from a video database in a depth-first search (DFS) manner. (3) To efficiently 

mine frequent closed patterns, we develop several pruning strategies to prune 

non-closed patterns. (4) By exploiting the CV-tree and rplists to store the information 

of frequent video patterns, the CVP algorithm can localize the candidate generation, 

pattern join, and support counting in a small amount of rplists. (5) The experimental 

results show that our proposed algorithm is efficient and scalable, and outperforms the 

modified Apriori algorithm. 

The rest of this thesis is organized as follows. Chapter 2 illustrates the 

preliminary concepts and problem definitions. Chapter 3 describes our proposed 

algorithm. Chapter 4 shows the experimental setup and performance evaluation. 

Finally, the conclusions and future work are discussed in Chapter 5. 
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Chapter 2  Preliminaries and Problem Definitions 

In this chapter, we will first describe the preliminary concepts and then define 

some terms used in this thesis. 

Consider a video database D={v1,v2,…,vn} contains n videos, n>1. These 

videos are preprocessed into several frames, where each frame contains one object 

and is converted to a bitmap (or binary) image in a two-dimensional space, and the 

frame size is g×g, g>2. Let vi,j indicate the jth frame of video vi. vi,j is represented by a 

bitmap. For example, Figure1 illustrates three frames of video v1 with frame size of 

3×3. We can use 9 bits to represent the contents of each frame and the frame v1,1 is 

denoted as (010 010 010). That is, we list the contents in bits row by row. 

 

 

Figure 1. Three frames of video v1 with frame size of 3×3 

Definition 1. A spatial pattern (spattern for short) is defined as (a1a2…ag2), where ai 

= 0 or 1, i = 1,2,…,g2. The length of an spattern is defined as the number of 1-bits in 

the spattern. An spattern of length l is called an l-spattern. For example, the first frame 

of the video shown in Figure 1 can be denoted as (010 010 010), which is a 3-spattern.  

Definition 2. A pixel in a video is denoted by (x,y,t), where (x,y) is the coordinate of 

the pixel in frame t. A pixelset contains a set of pixels. For example, the first frame of 

the video shown in Figure 1 can be denoted as {(2,1,1), (2,2,1), (2,3,1)}.  

Definition 3. Given two spatterns S=(a1a2…ag2) and S’=(b1b2…bg2), where 1<i<g2. 

If there exists an integer j such that if bi+j=1 when aj=1, j=k,k+1, …, l, we can say that 

S is contained by S’, denoted as S⊆S’, where ak is the first 1-bit and al is the last 1-bit 

in S. We can also say that S is a sub-spattern of S’, or S’ is a super-spattern of S. 

 v1,3 v1,2 v1,1 

v1 
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Moreover, an spattern S is contained by a video if there exists a frame containing S in 

the video. For example, S=(110 100 000) is a sub-spattern of S’=(011 110 000).  

Definition 4. If an spattern S is contained by the tth frame of video v, the reference 

point of S is denoted as (x,y,t,v), where (x,y) is the coordinate of the uppermost and 

leftmost pixel of S appearing in frame t. For example, the reference point of 3-spattern 

(010 010 010) appears in the first frame of video 1 shown in Figure 1. Thus, its 

reference point can be denoted as (2,1,1,1). The reference points of 2-spattern (100 

100 000) are (2,1,1,1) and (2,2,1,1).  

Definition 5. The support of an spattern S, denoted as sup(S), is defined as the 

number of videos containing S in the database. S is frequent if sup(S) is not less than a 

user-specified minimum support threshold, minsup. 

Definition 6. A frequent spattern S is closed if there does not exist any super-spattern 

of S with the same support. 

Definition 7. The projected database prj(S) of an spattern S contains a set of 

reference points of the frames containing S in the database. The prj(S) of 2-spattern 

S=(100 100 000) in video v1 shown in Figure 1 is {(2,1,1,1), (2,2,1,1), (2,1,2,1), 

(2,2,2,1), (2,1,3,1), (2,2,3,1)}. It means that the 2-spattern appears at (2,1) and (2,2) in 

the first frame, at (2,1) and (2,2) in the second frame, and (2,1) and (2,2) in the third 

frame of v1.  

A video pattern is formed by a sequence of spatterns. To represent a video 

pattern flexibly, we introduce a time span between two adjacent spatterns in the video 

pattern, where a time span is denoted as [t1, t2], t1 and t2 are positive integers, t1<t2. It 

means that the distance between both adjacent spatterns can be from t1 to t2 frames. 

Definition 8. A video pattern (or vpattern for short) is defined as S1[t11, t12]S2[t21, 

t22]S3…Sk, where Si is an spattern, i = 1, 2,…, k, and the time span between Sj and Sj+1 

is [tj1, tj2]. The length of a vpattern is defined as the number of spatterns in it. A 
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vpattern of length k is called a k-vpattern. A 1-vpattern, which is also an spattern, does 

not have any time span. That is, an spattern is a special case of vpatterns. For example, 

the 3-vpattern in video v1 shown in Figure 1 is denoted as (010 010 010)[1,1](011 010 

010)[1,1](011 110 010). 

Since a vpattern can span many frames, discovering all such vpatterns would 

require a lot of resources, but a user may only be interested in vpatterns that span a 

certain number of frames. Therefore, to avoid wasting resources by mining unwanted 

vpatterns, we introduce a parameter called maxinterval. When mining vpatterns in a 

video database, we only find the vpatterns where the time span between any two 

adjacent spatterns in the vpatterns is not greater than maxinterval. 

Definition 9. A vpattern V=S1[t11, t12]S2[t21, t22]S3…Sk is contained by another 

vpattern V’=S’1[t’11, t’12]S’2[t’21, t’22]S’3…S’l if we can find k spatterns  S’j1, S’j2,…, 

S’jk in V’ such that Si is contained by S’ji and [ti1, ti2] is equal to [tji1, tji2], where 1<i<k, 

and k<l. We can also say that V is a subpattern of V’, or V’ is a super-pattern of V, 

denoted as V⊆V’. For example, V=(100 110 100)[1,3](010 111 010)[1,3](001 011 001) 

is contained by V’=(111 111 100)[1,3](011 111 010)[1,3](001 011 001).  

Definition 10. A vpattern V=S1[t11, t12]S2[t21, t22]S3…Sk is contained by a video if we 

can find k frames, f1, f2,…, fk, in the video so that fi contains Si, and the time span 

between fj and fj+1 is within [tj1, tj2], where i=1,2,…, k and j=1,2,…, k-1. 

Definition 11. The support of a vpattern V, denoted as sup(V), is defined as the 

number of videos containing V in the database. V is frequent if sup(V) is not less than 

a user-specified minimum support threshold, minsup. 

Definition 12. A frequent vpattern V is closed if there does not exist any super-pattern 

of V with the same support. Note that if S1[1,2]S2 and S1[1,3]S2 have the same support, 

S1[1,3]S2 is not closed since [1,3] contains [1,2] and S1[1,3]S2 is less expressive.  
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Definition 13. The projected database prj(v) of a vpattern v is donoted as {(t1,v1), 

(t2,v2),…,(tm,vm)}, where v appears in video vi and starts from frame ti, and (ti, vi), 

1<i<m, are sorted in ascending order.  

 

 

Figure 2(a) shows a video database containing two videos v1 and v2, where 

each video has three frames. Assume that minsup=2 and maxinterval=2. The video 

pattern V= (010 010 010)[1,1](011 010 010)[1,1](011 010 010) is frequent as shown 

Figure 2(b). The projected database prj(V)={(1,1),(1,2)}  

The objective of the proposed method is to find the frequent closed video 

patterns in a video database with respect to the user-specified minimum support and 

maximum interval threshold. 

  

,  ,  ,  

 

,  ,  ,  

 

(a) 

3-vpattern 

(b) 

Figure 2. An example video database 
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Chapter 3  Our Proposed Method 

In this chapter, we propose a novel algorithm, called CVP (Closed VPattern 

mining), to mine closed vpatterns in a video database. First, we devise two data 

structures, called rplist and CV-tree, to store frequent spatterns. By exploiting the 

CV-tree and rplists, the CVP algorithm mines frequent closed patterns from a video 

database in a depth-first search (DFS) manner.  

3.1 Rplist and CV-tree 

To store the information of projected database prj(S) of a frequent spattern S 

during the mining process, we devise a data structure, called reference point list (rplist 

for short). 

Definition 14. P{r1,r2,…,rm} is an rplist, where P is a vpattern (or spattern) and ri is 

the reference point of frame containing P, 1<i<m. For example, the rplist of the 

vpattern (100 100 000) in the video database shown in Figure 2 is denoted as (100 100 

000) {(2,1,1,1), (2,2,1,1), (2,1,2,1), (2,2,2,1), (2,1,3,1), (2,2,3,1), (2,1,1,2), (2,2,1,2), 

(2,1,2,2), (2,2,2,2), (2,1,3,2), (2,2,3,2)}. 

To generate all frequent spatterns, we first have to generate all possible 

candiadate 2-spatterns. Let us consider how to generate all possible candidate 

2-spatterns for a video database with frame size of g×g.  

Lemma 1. There are at most 2g2-2g possible candidate 2-spatterns in a video database 

with frame size of g×g. 

Proof: For a frame size of g×g, if we fix the first pixel of the candidate 2-spattern at 

(1,1), we can generate (g2-1) candidate 2-spatterns since the pixel can be combine 

with the other pixel in the rest of cells to form a candidate 2-spattern. If we fix the 

first pixel of the candidate 2-spattern at (i,1), we can generate (g-1) candidate 



 

13 
 

2-spatterns since the pixel can be combine with the pixel in the first column except 

(1,1), 2<i<g. Therefore, we have (g2-1)+(g-1)*(g-1)=2g2-2g candidate 2-spatterns.  

For example, we have 12 candidate 2-spatterns for a video database with 

frame size of 3×3, as shown in Figure 3. 

 

Figure 3. Candidate 2-spatterns with frame size of 3×3 

By scanning the video database once to count the support for each possible 

candidate 2-spattern, we can obtain all frequent 2-patterns and record the projected 

database of each frequent 2-spattern by using an rplist. Then, we put the rplists of 

those frequent 2-spatterns to the second level of the CV-tree, which is designed to 

store the patterns generated during the mining process.  

Definition 15. Each node in the CV-tree is an rplist and has two kinds of children, that 

are used to record the video patterns grown in the spatial and temporal dimensions, 

respectively. The nodes grown in the spatial dimension are called s-nodes while the 

nodes grown in the temporal dimension are called t-nodes. The root of a CV-tree is a 

null pattern, {∅}. The pattern of the parent node of vpattern P is a sub-pattern of P. 

For example, the CV-tree shown in Figure 4 contains all frequent 2-spatterns 

in the example video database shown in Figure 2. The nodes of frequent 2-spatterns in 

the CV-tree are placed in the same order as they are generated, so do all k-patterns.  
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Figure 4. The CV-tree containing frequent 2-spatterns 

3.2 Pattern generation 

By joining two k-spatterns in the CV-tree, it generates a new (k+1)-spattern 

and the rplist of the new spattern is the intersection of rplists of two k-spattern. By 

using the rplist intersected, we can count the support of the newly generated spattern. 

If the support is not less than minsup, we can add the rplist of the newly generated 

spattern to the CV-tree.  

To join 2-spatterns P and Q in a video database with frame size of g×g, we 

have to shift the first pixel of P to match that of Q to avoid generating duplicate 

spatterns. If any pixel in the shifted P is greater than (g, g), we say that shifted P is not 

a valid pattern. Thus, the join operation is not allowed. 
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Definition 16. Any two frequent 2-spatterns S1 and S2 are joinable. The spattern of S1 

joining to S2 is equal to S1∨S2, which is a 3-spattern, where ∨ is the logical OR 

operator for a bit-string. The rplist of the joined spattern is equal to the intersection of 

the rplists of S1 and S2.  

For example, in Figure 4, the spattern of the first node (110 000 000) is 

joinable to (100 100 000) since the first pixels of both spatterns are at the same 

location. The intersection of the rplists of both spatterns are {(2,1,2,1), (2,1,3,1), 

(2,2,1,2), (2,1,2,2), (2,1,3,2)}. The joined spattern is equal to (110 000 000)∨(100 100 

000)=(110 100 000), as shown in Figure 5(a), which is a 3-spattern with the support 

equal to 2. If minsup=2, the joined 3-spattern can be added to the CV-tree and 

becomes a child node of the node of (110 000 000). 

  

 

Figure 5. Joining two spatterns 

However, when the first pixels of both joining 2-spatterns are not at the same 

location, we fix the location of the latter 2-spattern and shift the former 2-spattern 

 (d) 

 (c) 

 (b) 

(a) 
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such that the location of first pixel of the former one is the same as that of the latter 

one. For example, to join both 2-spatterns (110 000 000) and (010 100 000) as shown 

in Figure 5(b), we shift the former spattern to (011 000 000) as shown in Figure 5(c) 

and then join both spatterns as shown in Figure 5(d). Finally, we can obtain a 

3-spattern (011 100 000). Next we define a set of joinable nodes called joinable class. 

Definition 17. Two frequent k-spatterns S1 and S2 are joinable if both share the first 

(k-1) pixels, k>3. The joined spattern is equal to S1∨ S2, which is a (k+1)-spattern. The 

rplist of the joined spattern is equal to the intersection of the rplists of S1 and S2. 

Definition 18. The joinable class of a frequent k-spattern S is JC(S)={S1,S2, …,Sn}, 

where S is joinable to Si and Si is a frequent k-spattern, k>2, 1<i<n. Note that the rplist 

of Si is a sibling node of the rplist of S. That is, the rplists of Si and S share the same 

parent in the CV-tree. 

Definition 19. Two frequent k-vpatterns V1 and V2 are joinable if both share the first 

(k-1) spatterns, the last spatterns of both vpatterns are joinable, and all the time spans 

of both vpatterns are the same, k>2. The joined vpattern is obtained by replacing the 

the last spattern of V1 with the joined spattern of both last spatterns. The rplist of the 

joined spattern is equal to the intersection of the rplists of V1 and V2. 

Definition 20. The joinable class of a frequent k-vpattern V is JC(V)={V1,V2, …,Vn}, 

where V is joinable to Vi and Vi is a frequent k-spattern, k>2, 1<i<n. Note that the 

node of Vi is a sibling of the node of V. That is, the nodes of Vi and V share the same 

parent in the CV-tree. 

During the process of pattern generation, we first grow frequent video patterns 

in the spatial dimension and then grow them in the temporal dimension. To grow the 

frequent video patterns from a node of the CV-tree in the spatial dimension, we join 

the vpattern (P) of that node to each vpattern in P’s joinable class. If the joined pattern 

is frequent, it is added to the CV-tree and becomes the child node of node P. The 

procedure is repeated in a depth-first search manner until no more frequent vpatterns 
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can be found. 

To grow the frequent video patterns from a node of the CV-tree in the temporal 

dimension, we first mine the frequent 2-spatterns in the projected database of the 

vpattern of that node so that the distance between the vpattern and each frequent 

2-spattern mined is not greater than maxinterval. For each frequent 2-spattern mined, 

we append it to the vpattern to generate a new video pattern Q and compute the time 

span between the vpattern and 2-spattern. Next, we grow Q in the spatial dimension as 

the steps described above. 

Let us consider how to mine vpatterns by a CV-tree as shown in Figure 6, 

where a part of the growing processes both in the spatial and temporal dimension is 

shown. In Figure 6, we use the example video database in Figure 2 to explain the 

process of growing patterns in the spatial and temporal dimensions. Assume that 

minsup=2 and maxinterval=2. After putting all frequent 2-spatterns to the second level 

of the CV-tree, we generate patterns from the first 2-spattern (110 000 000) The 

2-spattern (110 000 000) can be joined to each pattern in its joinable class, namely, 

(100 100 000), (100 010 000), (100 000 100), (010 100 000), (010 000 100), (001 100 

000). By joining (110 000 000) to each pattern in its joinable class, we obtain three 

frequent 3-spatterns, namely, (110 100 000), (110 000 100) and (011 100 000). We 

add these 3-spatterns to be the child nodes of node (110 000 000). Next, we grow the 

patterns from the 3-spattern node (110 100 000) in the same way and obtain two 

frequent 4-spatterns, (110 100 100) and (011 110 000). By joining both 4-spatterns, 

we obtain a 5-spattern node (011 110 010). At this point, we find that the joinable 

class of the 5-spattern is empty. Thus, no new spattern can be generated. Therefore, 

we finish growing the patterns in the spatial dimension.  

Next, we start to grow the patterns in the temporal dimension. The projected 

database of the 5-spattern (011 110 010) is {(2,1,3,1), (2,1,2,2)}. We mine frequent 

2-spatterns in the projected database so that the distance between every 2-spattern and 
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the 5-spattern is not greater than the maxinterval. Nevertheless, we cannot find any 

frequent 2-spattern in the projected database. Then, we backtrack to node (110 100 

100) and grow the patterns from this node in the temporal dimension. The projected 

database of (110 100 100) is {(2,1,2,1), (2,1,3,1), (2,1,2,2), (2,1,3,2)}. We can mine 

five frequent 2-spatterns from the projected database, namely (110 000 000), (100 100 

000), (100 000 100), (010 100 000), and (010 000 100). The projected database of the 

first frequent 2-spattern (110 000 000) is {(1,2,3,1), (2,1,3,1), (2,1,3,2)}. We compute 

the time span between the 4-spattern and the 2-spattern, which is [1,1]. Then we 

append the 2-spattern (110 000 000) to the 4-spattern to generate a new 2-vpattern, 

(110 100 100)[1,1](110 000 000). Similarly, we can find other four four 2-vpatterns as 

shown in Figure 6.  

Then, we can grow the pattern from (110 100 100)[1,1](110 000 000) in the 

spatial dimension. We can obtain two 3-spatterns, (110 100 000) and (110 000 100), 

and one 4-spattern, (110 100 100). That is, we can obtain three v-patterns, (110 100 

100)[1,1](110 100 000), (110 100 100)[1,1](110 000 100), and (110 100 100)[1,1](110 

100 100). For each spattern obtained, we need to grow the patterns from it in temporal 

dimension. The steps described above will be recursively in a depth-first search 

manner until no more patterns can be found. 
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Figure 6. Growing patterns in the spatial and temporal dimensions 
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Figure 7. The growing representation of the CV-tree 

To explain our concept more clearly, we use the example shown in Figure 7 to 

demonstrate the growing process, where the s-nodes and t-nodes are generated in the 

DFS manner recursively. In this example, we start from node A of a 2-spattern. Three 

s-nodes of 3-spatterns are generated from node A by joining the pattern of A to the 

patterns in its joinable class, where the joinable class of A contains the sibling nodes 

of A. Next, one s-node of a 4-spattern is generated from node B and no s-node can be 

grown from node C. Thus, we start to grow t-nodes by mining frequent 2-spatterns 

from the projected database of C so that the time span between the pattern of C and 

each frequent 2-spattern mined is not greater than maxinterval. Then, we append four 

frequent 2-spatterns mined to C and form four frequent 2-vpatterns, each of which 

consists of one 4-spattern and one 2-spattern.  

For the vpattern of node D, we continue to generate two 3-spatterns E and F in 

the spatial dimension. No s-node and t-node can be generated from node E. Thus, E is 
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a leaf node. No s-node but one t-node G can be grown from node F to form a 

3-vpattern. Then, we backtrack to node D and start to grow t-nodes from it. Since we 

can find a frequent 2-spattern H, a new 3-vpattern can be formed. Since H is a leaf 

node, we backtrack to node D then node C, and go to node I. The steps described 

above will be repeated in a depth-first search manner until no more patterns can be 

generated.  

3.3 Closure checking and pruning strategies 

We apply a similar concept used in CHARM [21] to perform pruning 

strategies and closure checking. There are two phases in our pruning strategies, 

namely, spattern pruning and vpattern pruning. We propose four rules in the first 

phase to prune unnecessary spatterns. In the second phase, we generate t-nodes only 

from the closed vpatterns or non-closed vpatterns with different projected database in 

the temporal dimension. After finishing the pruning strategies of both phases, we 

perform the closure checking for each possible vpatterns and output closed vpatterns. 

Let P and Q be two joinable k-spatterns in a joinable class C, and their 

projected databases be prj(P) and prj(Q), respectively. Let R be the pattern generated 

by joining P and Q, and prj(R) be the projected database of R. There are four kinds of 

relationships between prj(P) and prj(Q), namely, (1) prj(P) = prj(Q), (2) prj(P) ⊂ 

prj(Q), (3) prj(P) ⊃ prj(Q), and (4) prj(P) ≠ prj(Q). Based on these four relationships, 

we adopt four different ways to prune unnecessary spatterns.  

1. If prj(P) = prj(Q), prj(R) = prj(P) ∩ prj(Q) = prj(P) = prj(Q). Thus, we can 

simply replace every occurrence of P with R, and remove Q’s rplist from the 

CV-tree since it is not closed. 

2. If prj(P) ⊂ prj(Q), prj(R) = prj(P) ∩ prj(Q) = prj(P). We replace every 

occurrence of P with R. 

3. If prj(P) ⊃ prj(Q), prj(R) = prj(P) ∩ prj(Q) = prj(Q). In this case, we add R’s 
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rplist to P’s joinable class, and remove Q’s rplist from C since R occurs in 

wherever Q occurs. 

4. If prj(P) ≠ prj(Q), we cannot eliminate any pattern of both P and Q, just add 

R to P’s joinable class. 

 

Figure 8 shows the four relationships and the corresponding pruning processes. 

In Figure 8(a), if prj(P) = prj(Q), we replace P with the newly generated spattern R 

and delete Q from the CV-tree. Because Q’s projected database is as the same as P’s, 

R can be used to generate all possible spatterns which can be generated from Q. Then, 

the newly generated spattern will join to the spatterns in P’s joinable class. In Figure 

8(b), if prj(P) ⊂ prj(Q), it means that P’s projected database is contained by Q’s. In 

this case, we replace P with the newly generated spattern R. In Figure 8(c), if prj(P) ⊃ 

prj(Q), it means that P’s projected database contains Q’s. We add R’s rplist to P’s 

joinable class and remove Q’s rplist from C, since R occurs in wherever Q occurs. In 

Figure 8(d), if prj(P) ≠ prj(Q), we cannot eliminate any pattern of both P and Q, just 

add R to P’s joinable class. 

 

 
 (a) 
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Figure 8. Four pruning strategies 

We only grow the vpatterns from a closed vpattern or a non-closed vpattern 

with different projected database in the temporal dimension. First, we check if the 

growing node is closed or it is non-closed but has different projected database with 

closed vpatterns. If this is the case, we grow t-nodes from it in the temporal dimension. 

After an s-node is grown from a node, we put the newly generated vpattern to a closed 

pattern set and check if the new vpattern is closed. There are five cases as shown in 

Figure 9. First, if B contains A and the projected database of B also contains that of A, 

A is not closed, where A is a 1-vpattern in the CV-tree and B is a 1-vpattern in the 

closed pattern set. Thus, we mark node A in the CV-tree to indicate that it will not be 

grown in the temporal dimension, as shown in Figure 9(a). Second, if both A and B 

are the same and share the same projected database, A is not closed. Thus, we mark 

node A in the CV-tree to indicate that it will not be grown, as shown Figure 9(b). 

Third, if A is contained by B and sup(A)=sup(B), but the projected database is not 

contained by that of B, A is not closed but it will still have to be grown t-nodes later, 

as shown in Figure 9(c). Fourth, if A contains B and the projected database of A 

contains that of B, A is added to the closed pattern set and B is removed from the 

closed pattern set at the same time, as shown in Figure 9(d). Finally, if A and B do not 

 (d) 
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contain each other, A is added to the closed pattern set, as shown in Figure 9(e). 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Closure checking in vpattern pruning 

3.4 The CVP algorithm 

The CVP algorithm mines all frequent closed vpatterns in two dimensions, 

namely, spatial and temporal. It first grows frequent video patterns in the spatial 

dimension and then grows them in the temporal dimension. To grow the frequent 

video patterns from a node of the CV-tree in the spatial dimension, we join the 

vpattern (P) of that node to each vpattern in P’s joinable class. If the joined pattern is 

Closed Pattern Set

(a) 

 (b) 

A 

B 

A 

 (c) 

 (d) 

{(1,2,1,1), (1,2,2,1), (2,1,2,2), 
(2,1,3,2)} 

A 

A 

 (e) 
A 

add

add

add

{(1,2,2,1), (2,1,2,2), (2,1,3,2)}

{(1,2,2,1), (2,1,2,2), (2,1,3,2)}

{(1,2,2,1), (2,1,2,2), (2,1,3,2)}

{(1,2,2,1), (2,1,2,2), (2,1,3,2)}

{(1,2,2,1), (2,1,2,2), (2,1,3,2)}



 

26 
 

frequent, it is added to the CV-tree and becomes the child node of node P. The 

procedure is repeated in a depth-first search manner until no more frequent vpatterns 

can be found. 

To grow the frequent video patterns from a node of the CV-tree in the temporal 

dimension, we first mine the frequent 2-spatterns in the projected database of the 

vpattern of that node so that the distance between the vpattern and each frequent 

2-spattern mined is not greater than maxinterval. For each frequent 2-spattern mined, 

we append it to the vpattern to generate a new video pattern Q and compute the time 

span between the vpattern and 2-spattern. Next, we grow Q in the spatial dimension as 

the steps described above.  

The CVP algorithm is shown in Figure 10, which contains three functions: 

CVPGrowth, GrowSNode and GrowSNode. They are shown in Figures 11, 12, and 13, 

respectively. 

Algorithm: CVP 
Input: a video database D, a minimum support threshold minsup, a maximum time 
span threshold maxinterval 
Output: all closed vpatterns CV  
(1) Scan the database D to find all frequent 2-spatterns, collect all frequent 

2-spatterns found into C2, and add the rplist of each frequent 2-spattern found to 
the second level of the CV-tree;  

(2) Let CV=∅; 
(3) for each P in C2 do 
(4)     CVPGrowth(P,CV); 
(5) end for 
(6) for each vpattern Q in CV do 
(7)     Check if Q is closed; 
(8)     if Q is not closed then 
(9)         Delete Q from CV; 
(10)     end if 
(11) end for 
(12) return CV; 

Figure 10. The CVP algorithm 
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As shown in Figure 10, we first scan the video database to find all frequent 

2-spatterns in step 1. For each frequent 2-spattern found, we call the CVPGrowth 

function to grow video patterns in both spatial and temporal dimensions. For each 

video pattern found, we check if it is closed. If this is the case, the video pattern will 

be added to CV.  

 

Function: CVPGrowth 
Input: a vpattern P, all closed vpatterns CV 
Output: all closed vpatterns CV 
(1) Add P to CV; 
(2) Cm+1=GrowSNode(P); 
(3) if (Cm+1≠∅) then 
(4)     for each Q in Cm+1 do 
(5)         CVPGrowth(Q,CV); 
(6)     end for 
(7) end if 
(8) if P is a closed k-vpattern then 
(9)     Cn+1=GrowTNode(P); 
(10)     if (Cn+1≠∅) then 
(11)         for each R in Cn+1 do 
(12)             CVPGrowth(R,CV); 
(13)         end for 
(14)     end if  
(15) end if 

Figure 11. The CVPGrowth function 

The CVPGrowth function consists of two parts. First, it calls the GrowSNode 

function to grow the video patterns in the spatial dimension. Then, it calls the 

GrowTNode function to grow the video patterns in the temporal dimension. For each 

newly generated video pattern, we recursively call the CVPGrowth function to grow 

video patterns in both spatial and temporal dimensions. 
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Function: GrowSNode 
Input: an m-vpattern P 
Output: a set of (m+1)-spatterns Cm+1  
(1) Let Cm+1=∅; 
(2) for each S in JC(P) do 
(3)     if S is joinable to P then 
(4)         Generate a (m+1)-vpattern T by joining P to S;  
(5) If T is frequent, append the rplist of T to be a child node of P and add 

T to Cm+1; 
(6)     end if 
(7) end for 
(8) return Cm+1; 

Figure 12. The GrowSNode function 

In the GrowSNode function, we join P to every vpattern in P’s joinable class, 

where T is the vpattern generated by joining P to S. If T is frequent, we append T’s to 

be a child node of P in the CV-tree.  

 

Function: GrowTNode 
Input: a vpattern P 
Output: a set of 2-spatterns Cn+1  
(1) Let Cn+1=∅;  
(2) Mine the frequent 2-spatterns in P’s projected database so that the distance 

between P and each frequent 2-spattern mined is not greater than maxinterval. 
Collect all frequent 2-spattern mined into C2.  

(3) for each S in C2 do 
(4) Append S to P to generate a new vpattern Q;  
(5) Compute the time span between the last two spatterns of Q and collect Q 

into Cn+1.  
(6) end for 
(7) return Cn+1; 

Figure 13. The GrowTNode function  

In the GrowTNode function, we first mine all the frequent 2-spatterns in P’s 

projected database so that the distance between P and each frequent 2-spattern mined 
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is not greater than maxinterval. For each frequent 2-spattern mined S, we append it to 

P to generate a new vpattern Q and compute the time span between the last two 

spatterns of Q. That is, we compute the time span between P and S.  

3.5 An example 

In this section, we use the example database shown in Figure 2 and apply our 

proposed pruning strategies to illustrate how the CVP algorithm works to mine closed 

vpatterns. The process of growing s-nodes and t-nodes are already represented in 

Section 3.2 and Figure 6. We can get all frequent vpatterns if we continue growing as 

the manner explained in Figure 6. After applying our pruning strategies and the 

closure checking, we can get all closed vpatterns finally. 

As demonstrated in Figure 14, from the first 2-spattern (110 000 000), three 

3-spatterns can be grown and appended to it. Then, the spattern (110 000 000) can be 

viewed as a vpattern with length 1 and we add the 1-vpattern (110 000 000) to the 

closed pattern set and check if it is closed. Because the closed set is empty, we add it 

to the closed pattern set directly. In a DFS manner, we next grow the patterns from the 

3-pattern node (110 100 000).   

Since prj((110 100 000)) ⊃ prj((110 000 100)) and prj((110 100 000)) ⊃ 

prj((011 100 000)), we remove the nodes of (110 000 100) and (011 100 000) from 

the CV-tree but generate a new 4-spattern node (110 100 100) to be the child node of 

(110 100 000). After growing s-nodes for (110 100 000), we add it to the closed 

pattern set. Since the 1-vpattern (110 000 000) in the closed pattern set is contained by 

(110 100 000), we replace (110 000 000) with (110 100 000) in the closed pattern set 

and mark the node (110 000 000) in the tree to indicate that it is not closed and cannot 

be grown.
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Figure 14. Growing closed vpatterns 
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Then, we grow the patterns from the 4-spattern node. Since prj((110 100 100)) 

⊃ prj((011 110 000)), we remove the 4-spattern node (011 110 000) and grow a new 

5-spattern (011 110 010). Then we compare (110 100 100) with (110 100 000) which 

is in the closed pattern set, we find (110 100 000) is not closed and it is contained by 

(110 100 100) so we replace (110 100 000) with (110 100 100) in the closed pattern 

set. For the non-closed node (110 100 000) in the tree, prj((110 100 000)) is different 

from prj((110 100 100)) where (110 100 100) is a closed 1-vpattern in the closed 

pattern set so the node (110 100 000) still has to be grown in the temporal dimension 

later. Next, we continue growing the patterns from 5-spattern (011 110 010) and find 

that no s-nodes can be grown from this node. Since the newly generated 1-vpattern 

(011 110 010) is closed after the checking, we add it to the closed pattern set and 

replace the non-closed 1-vpattern (110 100 100). Then we try to grow t-nodes from 

the 5-spattern. However, no t-nodes can be grown. Thus, we backtrack to its parent 

node (110 100 100) and grows five t-nodes. From the first 2-spattern (110 000 000) in 

t-nodes, two 3-spatterns are generated. We delete nodes (100 000 100) and (010 000 

100) from the CV-tree. Then, we add the 2-vpattern (110 100 100)[1,1](110 000 000) 

to the closed pattern set. We find this newly generated 2-vapttern is closed and it is 

added to the closed pattern set. At this time, there are closed 1-vapttern (011 110 010) 

and 2-vpattern (110 100 100)[1,1](110 000 000) in the closed pattern set. To grow the 

patterns from the generated 3-spattern (110 100 000), we find that prj((110 100 000)) 

= prj((110 000 100)). Thus, a new 4-spattern (110 100 100) is generated. Applying our 

pruning strategies, the 3-spattern (110 100 000) is replaced with the newly generated 

4-spattern (110 100 100) as shown in Figure 14. Then we check if vpattern (110 100 

100)[1,1](110 100 100) is closed. Since (110 100 100)[1,1](110 100 100) contains 

(110 100 100)[1,1](110 000 000), we replace the latter vpattern with the former one 

and mark the 2-spattern node (110 000 000) to indicate that it cannot be grown in the 

CV-tree. For the 4-spattern (110 100 100) in the CV-tree, no s-nodes can be grown 

and it is not closed. Thus, we mark it to indicate that it cannot be grown. Then we 

backtrack to node (110 000 000) which is marked. Thus, it cannot be grown in the 
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temporal dimension. 

We have presented the growing process of the first 2-spatern (110 000 000) in 

the first level of the CV-tree. At this moment, we can get two closed 2-vpatterns in the 

closed pattern set, as shown in Figure 15. 

 

 

 Figure 15. Closed vpatterns in the closed pattern set 

Similarly, we can repeat the above process in a depth-first search manner until 

no more vpatterns can be found. Finally, we can obtain four closed vpatterns, namely, 

(110 100 000)[1,1](011 110 010), (100 100 100)[1,1](011 110 010), (100 100 

100)[2,2](110 100 100), and (100 100 100)[1,1](110 100 100)[1,1](110 100 100). 
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Chapter 4  Performance Evaluation 

In this chapter, we conducted the experiments by using both synthetic and real 

datasets to our proposed method with the modified Apriori algorithm [1]. Both 

algorithms were implemented using Microsoft Visual C++ 2005. All the experiments 

were performed on an IBM compatible desktop with an Intel Core 2 6300 CPU @ 

1.86GHz, 2.0 GB main memory, running on Microsoft Windows XP Professional. 

Note that the support of a pattern is defined as the fraction of videos containing the 

pattern in the video database in the experimental section.  

The modified Apriori algorithm contains three phases. First, we mine all 

frequent spatterns by using the Apriori property [1] level by level and collect all 

frequent 2-spattern into C2. Then, we check if each frequent spattern mined is closed 

and then delete non-closed ones.  

Second, we generate all possible candidate 2-vpatterns by joining each closed 

spattern to each 2-spattern in C2, where the time spans between them include all the 

possible combinations of time spans so that each time span is not greater than 

maxinterval. Then, we scan the video database to count the support for each candidate 

2-vpatterns generated. If its support is not less than minsup, it is frequent. For the 

frequent 2-vpatterns obtained, we expand their last spatterns by using the Apriori 

property level by level. Thus, we can obtain all frequent 2-vpatterns in the database. 

Then, we check if each frequent 2-vpattern mined is closed and then delete non-closed 

ones.  

Third, we generate all possible candidate k-vpatterns by by joining each closed 

(k-1)-vpattern to each 2-spattern in C2, k>2, where the time spans between them 

include all the possible combinations of time spans so that each time span is not 

greater than maxinterval. Then, we scan the video database to count the support for 

each candidate k-vpatterns generated. If its support is not less than minsup, it is 
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frequent. For the frequent k-vpatterns obtained, we expand their last spatterns by 

using the Apriori property level by level. Thus, we can obtain all frequent k-vpatterns 

in the database. Then, we check if each frequent k-vpattern mined is closed and then 

delete non-closed ones. The steps in the third phase are repeated until no more video 

patterns can be found. 

4.1 Synthetic datasets 

The synthetic generator used here is similar to the one used in Agrawal et al. 

[1] with some modifications since the transaction here is a video. A video consists of a 

sequence of frames and we fix the frame size to be a square of 100×100. Table 1 lists 

the parameters and the default settings used in the synthetic data generator. 

Table 1. Parameters used to generate synthetic data 

Parameter Meaning Default setting

 Number of videos in a video database 1,000
 Average number of frames in a video 10
 Average length of spatterns 8

 Maximum time span threshold 2
 Minimum support threshold 5%

 Average number of potential patterns 50
 Average length of spatterns in potential patterns 10

4.2 Performance evaluation on synthetic datasets 

In this section, we compare our algorithm CVP with the modified Apriori 

algorithm by varying one parameter and keep other parameters at default values as 

shown in Table 1.  

Figure 16 shows runtime versus minimum support threshold, where the 

minimum support threshold varies from 1% to 5%, the number of videos is 1000 and 

the average number of frames in a video is 10. The CVP algorithm runs 3-6 times 
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faster than the modified Apriori algorithm. The modified Apriori algorithm is more 

sensitive to minimum support threshold than the CVP algorithm. When the minimum 

support threshold decreases, the modified Apriori algorithm generates a large number 

of candidate patterns. However, the CVP algorithm localizes the support counting, 

pattern joining, and candidate pruning in the projected database. Therefore, the 

runtime of CVP algorithm increases slowly as the minimum support threshold 

decreases. 

 

Figure 16. Runtime versus minimum support  

 

Figure 17. Runtime versus number of videos 
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Figure 17 illustrates the runtime versus the number of videos, where the 

number of videos varies from 2000 to 10000, the average number of frames in a video 

is 10 and the minimum support threshold is 4%. When the number of videos increases, 

the runtimes of both algorithms increase nearly linearly and our CVP algorithm can 

run about 3 times faster than the modified Apriori algorithm. 

 

 

Figure 18. Runtime versus maximum time span 

 

Figure 19. Number of closed patterns versus maximum time span 
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Figure 18 illustrates the runtime versus maximum time span threshold. Figure 

19 shows the number of closed patterns generated versus the maximum time span 

threshold, where the maximum time span threshold varies from 1 to 5, the number of 

videos is 1000, the average number of frames in a video is 10 and minimum support 

threshold is 5%. The CVP algorithm runs about 2.5 times faster than the modified 

Apriori algorithm. Both algorithms increase smoothly in runtime. As the maximum 

time span increases, the number of closed patterns also increases. However, the 

modified Apriori algorithm generates more unnecessary candidate patterns while 

maximum time span threshold increases so its efficiency is worse than the CVP 

algorithm. 

 

 

Figure 20. Runtime versus number of frames 
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needs more time than the CVP algorithm. As shown in Figure 19, the number of 

closed patterns increases when the number of frames increases. That means there are 

more candidate closed patterns and we needs more time to check and prune. 

 

 

Figure 21. Number of closed patterns versus number of frames 
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4.3 Performance evaluation on real datasets 
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Figure 22. A real video dataset 

Table 2. Parameters used in the real dataset 

Parameter Meaning Default setting
 Number of videos in a video database 100

 Average number of frames in a video 3

 Average length of spatterns 27

 Maximum time span threshold 2

 Minimum support threshold 5%

 

The default settings of the parameters used in the real dataset are shown in 

Table 2, where the average length of spatterns is 27, the maximum time span 

threshold is 2 and the minimum support threshold to 5%. Table 3 show the mining 

result of the real dataset by using our proposed algorithm. Figure 3 shows a pattern 

mined by our proposed algorithm. Because of the average length of spatterns of the 

dataset is 27, it is longer than synthetic datasets in Section 4.2. The modified Apriori 

algorithm will generate a large number of candidate patterns during the mining 

process. That leads to out of memory for the modified Apriori algorithm. Hence, we 

can compare our proposed algorithm with the modified Apriori algorithm by using 

this real dataset. 

 

Frame 1 Frame 2 Frame 3 
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Table 3. Experiment results of a throwing-ball dataset 

Total number of closed patterns 7,471 
Average length of closed spatterns 15.47 
Maximum length of closed spatterns 27 
Average length of closed vpatterns 2.97 
Maximum length of closed vpatterns 3 
Total runtime 16214.1 sec. 

 

   

Figure 23. A closed pattern mined 

In Table 3, there are 7471 closed patterns mined. That means the CVP 

algorithm can mine the posture of throwing-balls in this experiment. Figure 23 shows 

one of the closed patterns mined. The mined closed pattern shows the movement of 

the object in the video and we can distinguish this kind of throwing-balls pattern from 

other movements. 

The experimental results shows that the CVP algorithm is more scalable and 

efficient than the modified Apriori algorithm since it can localize the support counting, 

pattern joining and candidate pruning in the projected database.  
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Chapter 5  Conclusions and Future work 

In this thesis, we proposed a novel algorithm, called CVP (Closed Video 

Pattern), to mine closed patterns in a video database. Our proposed algorithm consists 

of two phases. We first grow frequent video patterns in the spatial dimension and then 

grow them in the temporal dimension. By exploiting the CV-tree and rplists to store 

the information of frequent video patterns, the CVP algorithm can localize the 

candidate generation, pattern join, and support counting in a small amount of rplists. 

During the process of pattern generation, we develop several pruning strategies to 

prune unnecessary or non-closed candidate patterns. Therefore, it can efficiently mine 

frequent closed patterns in a video database. The experimental results show the CVP 

algorithm is efficient and scalable, and outperforms the modified Apriori algorithm. 

In the experiment conducted on the real dataset, the CVP algorithm is used to 

mine the patterns of throwing a ball. Besides that, the CVP algorithm can be used to 

find some interesting patterns in other applications, such as, action patterns, walking 

patterns, running patterns, swimming patterns, falling-down pattern, or 

getting-drowned patterns, etc.  

However, the CVP algorithm is a memory-based algorithm. It would face the 

problem of out of the memory when the dataset is getting larger and larger. Therefore, 

how to develop a disk-based algorithm or an integrated algorithm of getting the 

balance of memory and disk is worth further study in the future. Moreover, the CVP 

algorithm generates a large number of candidate patterns during the mining process 

when the object is big or the number of frames is large. Thus, it is worth developing a 

modified CVP algorithm to promote the mining efficiency in the future. 
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