R 00 il A L g RN - L O
AL~

Graduate Institute of Information Management

College of Management
National Taiwan University

Master Thesis

LR G TOREY HP RS L FTRFER
Mining Closed Patterns‘in Pointset Video Databases

o

gl

Lai, Yi-Yu

hUFCE T 2R L
Advisor: Anthony J. T. Lee, Ph.D.

PR 97 & T

July, 2008

BB LY HP LS L TR

Mining Closed Patterns in Pointset Video Databases

AR AR RS AL F
TR A R A AL
F Vi | ¥:

R 52 2 SRR

s

A ol S AN R B i BRI MY BRI K

TRy 2 B LR \ii?'ﬁn?ﬂ" g’v’ﬂ;}ﬂﬁ.uiiéf%&ﬁﬁé T E A RE 0 AN g

TR A R o B @R Y R B R e g
o EEFL FEANPL R A EP DELE > B AT g 0 By 2 24 g

€ A5 e~ HEF D S BT EF T Y o

EAARRHr FLAMUAEEF AR EfF o R P IR IF TR
FRL R AEHGY (R o RAPT X ORLE K8 BN AT Y

IF S GO A oA ¥ i I o

EHFRZARER: B 2 e s Ble - P& B S ol 7

Jﬁyﬂﬁ“é,wwﬁm§%%{§?;¥%ygﬁ‘ﬁﬁ’lﬁﬁﬂﬁ??

o F Fooy
- \ 'Il_ "
Fx g T py R?ﬁﬁf%;4%ﬁm§n% %~ BT 2k
.'.-'.J |
@P{J%iﬂ?ééﬁ#ﬁ%o“@;ﬁ G K AT PR Pl

HACPBAE ° 254 B2 it 4 2 To'i'ly_Lab fos ﬁiﬂ@mm&wﬁ g R NPT IR e
R %t TR ITEVEEE S R 2R S Fh v R EEA
&@i£52£&$¢p;%i&«4%fﬁﬁiﬁ&@ﬁﬁyo@wﬁséﬁ

B2 2 e A 802 2P Ahepr- & LA ﬁﬂﬁi/ﬁ’a’fr’i:}? 0

RSB RHADTA BB AR - B RN BAEA P F 2
EoRARGAL BB AP T AF P G PR % e

BB 0 5 B I e A S A R e A

A

R

M-
=

-n\-

ﬂ?zﬂ’* o

T

ﬁiﬁ:g\‘@i__l_;ﬁ: A

RF £

WY ALD BB AR TR MBS 2 TR
TE LA 1=

B 2R #1

%%%%%%%ﬁﬁ*gﬁﬁ%’éﬁﬁﬁﬂgp\ G H e R A ch
SHMTREY B A RDT oL S AP TR APT RS
P - BEERLG - BRAFAREE o ASIESTHES I BLE S TES
RS BT A E DR S AR g o F]pt s AR Y o A
Wﬁﬂ—%?ﬁﬁﬁﬁ%ﬁﬁifd@Jﬁﬁﬁm%ﬁﬁﬁ&éﬁﬁ?ﬁ%ﬁo
SRR ERLE R SR -ﬁ%ﬁ BRI OT RO LER B
HF S NELE TR AR .ﬁi«ﬂl%F'“i @3 AE RN B s) 3

e e 2 kBT A B E 7-.i_\grh4f§-'-\|1;, LT H H Mo AP E B

ﬁ-
MEES W&éﬁ4v“ﬁﬁ\# ﬁ@w;vzgg FEEE BT
A Y LELY T s gy e R T

T den™ R e 238 Apriori 597 i KB G o o

B4R | TR BB AR Y TR PR RS

THESISABSTRACT
Mining Closed Patternsin Pointset Video Databases

By Yi-Yu Lai
DEPARTMENT OF INFORMATION MANAGEMENT
NATIONAL TAIWAN UNIVERSITY
July, 2008
ADVISOR: Anthony J. T. Lee, Ph.D.

Nowadays, the number of multimedia datasets is increasing rapidly. Thus,
mining implicit and meaningful patterns from multimedia databases has attracted
more and more attention in recent years. The event object can be viewed as a
sequence of pointsets in a video. Minin_g closed patterns in pointset video databases
can help us understand the pattetn of anl-%"feht in video databases. In this thesis, we
first devise two data structures, calledl rpli::é.t and CV-tfee, to store the information of
frequent video patterns. Next, \.Ne propose a.novel algorithm, called CVP, to mine
frequent closed patterns from a video database in a depth-first search (DFS) manner.
Our proposed algorithm consists of two phases. We first grow frequent video patterns
in the spatial dimension and then grow them in the temporal dimension. To efficiently
mine frequent closed patterns, we develop several pruning strategies to prune
non-closed patterns. The CVP algorithm can localize the candidate generation, pattern
join, and support counting in a small amount of rplists. Therefore, it can efficiently
mine frequent closed patterns in a video database. The experiment results show that
our proposed method outperforms modified Apriori algorithm in synthetic data and

real data.

K eywor ds: data mining, pointset video database, closed pattern, frequent pattern

Table of Contents

Table Of CONENLSeeiiiriiiiiieiieeee e s i
LSt Of FIGUIESeiviiiiiiiitieeee e e ii
LSt Of TabIES...ccuviiiiiiiiieiiieecee e iii
Chapter I INtrodUCHION.......cocviiviiiiiiitieiere e 4
Chapter 2 Preliminaries and Problem Definitions.........c.ccccceevverieiinienienicniniieneenns 8
Chapter 3 Our Proposed Methodcccoeoieriiiiiniiiiiiiiceeeeee e 12
3.1 RPlist and CVAIEe....c..eiuiiriiiiiciiiiiceeeenete s 12
3.2 Pattern GEenerationibectus s reesssmneevadlinseeesesseenseneessessseneesseseessesssensesnne 14
3.3 Closure checking and pruning sStrateGiScceververrerrvereeriereenieneeneeeenne 21
34 The CVP algorithm .../l frac b ol TSR 25
35 An example,i= .. 29
Chapter 4 Performance Evaluation .i.......c.....bbui il 33
4.1 SYNthetic dAtaSELS........ciiisur iianesturreteneasihaheseeseeeteeeeeseseesenessesesessenesseseneesens 34
4.2 Performance evaluation on synthetic datasetscccceevervvereerersieneennennne. 34
4.3 Performance evaluation on real datasets.........c..cocvevveneeninieninienecenee, 38
Chapter 5 Conclusions and Future Workcccoceviiiinininiiniiiccecce 41
REfETENCESuviiiiiiiierie e 42

List of Figures

Figure 1. Three frames of video v; with frame size 0f 3X3c.cccoeviiviiiiniiiniecene 8
Figure 2. An example video databaseccceveeviriirieniieienieeeeceeee e 11
Figure 3. Candidate 2-spatterns with frame size of 3X3ccccooiiiiiiiiiiiiiie, 13
Figure 4. The CV-tree containing frequent 2-Spatterns.ccueevveerveereerieerieenveenneens 14
Figure 5. JOINING tWO SPALLEITISccvvievieriieeiieniieeiieeieeeieesiee et esteeeveesaeeereessaesnneesseens 15
Figure 6. Growing patterns in the spatial and temporal dimensions...........c..cccceeeennee. 19
Figure 7. The growing representation of the CV-treecccovvvevievienienieneniencenenee. 20
Figure 8. Four pruning Strat€@iesccuereeruerieniieieeieniieie sttt 24
Figure 9. Closure checking in vpatfern pruning......i.....ccoovoveemreriniieiieeeccn 25
Figure 10. The CVP algorithm....... ... 26
Figure 11. The CVPGrowth function..:;ﬁ ;E .'.. B W 27
Figure 12. The GrowSNode function.i.;....*.f'_.%._,..: =7 28
Figure 13. The GrowTNode FUNCHON e ssiiBbiene LAY A, 28
Figure 14. Growing closed Vpattemé...........'....... .. 30
Figure 15. Closed vpatterns in the closed pattern Set.........cccocevveerieneriinieneniieneenens 32
Figure 16. Runtime versus minimum SUPPOTLccueerieeriierieeriierieeniieereeneeesneenneens 35
Figure 17. Runtime versus number of VIde0osc.ceveevieriinieneniinieieeieeeceeen 35
Figure 18. Runtime versus maximum timMe SPANccceeevueerveeriiereeenieeneeeneeesieesieens 36
Figure 19. Number of closed patterns versus maximum time Span...........cccceeceereeenens 36
Figure 20. Runtime versus number of frames............ccceeverveniininiinieieeieeeeeen 37
Figure 21. Number of closed patterns versus number of framescc.cceecueereeenne. 38
Figure 22. A real video dataset.........cocueveeviiriiniiiiiinieieeieceeeeesi e 39
Figure 23. A closed pattern minedcccceeoierieiiniinieeeeeeeeee e 40

il

List of Tables

Table 1. Parameters used to generate synthetic data............cccceeveiriiiniiiinnicincenee, 34
Table 2. Parameters used in the real datasetc..cocevieviniiiiniininneee 39
Table 3. Experiment results of a throwing-ball dataset............cccceveevenienieiienieienee. 40

il

Chapter 1 Introduction

With advances in information technologies, a large amount of videos have
been collected into video databases. Thus, the approaches of mining useful patterns
from video databases have been attracted more and more attention in recent years. If
we known what patterns often happen in the videos, we will know what situations
often occur and to what we should pay attention. For example, we put a video camera
on corridor in a hospital to collect how the patients walk. Many videos will be
collected into a video database. By mining frequent patterns in such a database, we
could know the pattern of normal walk of patients and abnormal ones, like patients
falling down to the ground. If a patient falls down to the ground, an alarm will be
raised to notify the workers in the- first-aid étation. If we can know the pattern of
patients falling down in the video datal_)ase,_'it could” help a monitoring system to

-y

detect this event automatically, and inform-the firsteaid station immediately. We can
also detect other kinds of mbvement patterns of human beings to achieve some
purpose of security protection. For‘instance, if.we can obtain the patterns of the action

of throwing, it is helpful to avoid some violent behaviors such as throwing a grenade

or other weapons.

A pattern is frequent if it satisfies the user-specified minimum support. There
are many kinds of frequent patterns, including itemsets, subsequences, substructures,
etc. A frequently-occurring subsequence, such as the pattern that customers tend to
purchase first a PC, followed by a digital camera, and then a memory card, is also
called a sequential pattern. Sequential pattern mining, which discovers frequent
subsequences in a sequence database, is a critical data mining problem with board
applications, including the analyses of customer purchase behavior, Web access

patterns, scientific experiments, DNA sequences, and so on.

Many sequential mining methods have been proposed. Agrawal et al. [1]

4

proposed an Apriori method, which adopts a generate-and-test approach to mine
sequential patterns. The major approaches of mining a complete set of sequential
patterns include SPAM [2], GSP [16], SPADE [20], GO-SPADE [10] and PrefixSpan
[14]. GSP [16] uses the downward-closure property of sequential patterns and adopts
the candidate generate-and-test approach to mine sequential patterns. SPADE [20] and
GO-SPADE [10] devises a divide-and-conquer strategy to implement the sequential
patterns mining with a vertical data format. SPAM [2] exploits a vertical bitmap
structure to count supports efficiently. However, the Apriori-based methods would
generate many redundant candidates and require multiple database scans. Thus, Han
et al. [4] designed the FP-growth method to mine frequent itemsets without candidate
generation. Han et al. [5] proposed the FreeSpan method, which recursively projects a
sequential database into projected ‘databases; and generates frequent sequential
patterns from these projected:databases. PreﬁxSpan [14] mines the complete set of
patterns but greatly reduces:’the effprts /of candidate subsequence generation.
Moreover, using prefix-projection can ?E%s'tantially reduces the size of projected

databases and leads to mining the patterns 'éfﬁciéntly.

Many methods have been proposed-to miﬂé frequent subgraphs. Inokuchi et al.
[7] proposed an AGM method to represent a graph as an “adjacency matrix” and mine
them with an Apriori-based approach. Kuramochi et al. [9] presented an FSG method
based on the Apriori algorithm, which uses a sparse graph representation to minimize
storage space and computation time and has various optimization techniques for
candidate generations. Yan et al. [19] developed a depth-first search algorithm, gSpan,
to mine frequent subgraphs without candidate generations, where the DFS
lexicographic order and minimum DFS code are used to represent a graph. Huan et al.
[6] designed a candidate subgraph enumeration scheme, called FFSM, to mine
frequent subgraphs. Wang et al. [8] proposed a method that eliminates some vertices
in a path of a graph which can keep the topology structures in the graph and also

reduce the search space to increase the mining efficiency.

Instead of mining all frequent itemsets, Pasquier et al. [12] introduced a new
concept to mine the frequent closed itemsets. A frequent itemset is closed if there does
not exist any super-itemset with the same support. However, the number of closed
itemsets must be not greater than that of frequent itemsets in the database and frequent
closed itemsets mined can be used to generate a complete set of frequent itemsets [12].
Generally speaking, mining closed itemsets is more efficiently than mining all
frequent itemsets [12]. A-CLOSE [12] exploits the Apriori property to find closed
itemsets. CLOSET [13] and CLOSET+ [18] uses the FP-tree as a compact data
structure and mines frequent closed itemsets by projected databases. CHARM [21]
uses an itemset-tidset search tree and applies a diffset technique to increase its
performance. DCI_CLOSED [11] can detect and discard the duplicate closed itemsets
without the need of keeping the closed itemsetsimined in main memory. Singh et al.
[15] proposed the CloseMiner ~algerithm 1;0 mine closed itemsets where they
considered the frequent closed itemset _rr_lining problem as the problem of clustering
the complete set of itemsets with clo_sed:-:fd-s"ets. Uno et al. [17] developed the LCM
algorithm, which organizes the.closed Iitenféets _ihto a tfee structure and mines them in
a depth-first search manner. Cheng ct al. [3] proposed an algorithm to mine
d-tolerance frequent closed itemsets (6-TCFIs) in order to reduce the number of

closed itemsets.

However, the itemset mining methods proposed cannot use to mine the
patterns in video databases. The sequential mining methods do not consider the spatial
attribute in the video patterns. The graph mining methods cannot be used to mine the
patterns in video databases because they do not consider the temporal attribute.
Therefore, the itemset mining, sequential mining and graph mining methods are not

suitable to mine frequent closed patterns in video databases.

Therefore, in this thesis, we first devise two data structures, called rplist and
CV-tree, to store the information of frequent video patterns. Next, we propose a novel

algorithm, called CVP, to mine frequent closed patterns from a video database in a

6

depth-first search (DFS) manner. Our proposed algorithm consists of two phases. We
first grow frequent video patterns in the spatial dimension and then grow them in the
temporal dimension. To efficiently mine frequent closed patterns, we develop several
pruning strategies to prune non-closed patterns. By exploiting the CV-tree and rplists
to store the information of frequent video patterns, the CVP algorithm can localize the
candidate generation, pattern join, and support counting in a small amount of rplists.

Therefore, it can efficiently mine frequent closed patterns in a video database.

The contributions of this thesis are summarized as follows: (1) We first devise
two data structures, called rplist and CV-tree, to store the information of frequent
video patterns. (2) We propose a novel algorithm, called CVP, to mine frequent closed
patterns from a video database in a depth-first search (DFS) manner. (3) To efficiently
mine frequent closed patterns,«we ‘develop: several pruning strategies to prune
non-closed patterns. (4) By exp101t1ng the CV- tree and rplists to store the information
of frequent video patterns, the CVP algomthm can locahze the candidate generation,
pattern join, and support counting in a smg_ll amount of rplists. (5) The experimental

results show that our proposed algorithm is.efficient and scalable, and outperforms the

modified Apriori algorithm.

The rest of this thesis is organized as follows. Chapter 2 illustrates the
preliminary concepts and problem definitions. Chapter 3 describes our proposed
algorithm. Chapter 4 shows the experimental setup and performance evaluation.

Finally, the conclusions and future work are discussed in Chapter 5.

Chapter 2 Preliminariesand Problem Definitions

In this chapter, we will first describe the preliminary concepts and then define

some terms used in this thesis.

Consider a video database D={vi,Vo,...,Vh} contains n videos, N>1. These
videos are preprocessed into several frames, where each frame contains one object
and is converted to a bitmap (or binary) image in a two-dimensional space, and the
frame size is gxg, g>2. Let V;; indicate the jth frame of video Vi. Vi is represented by a
bitmap. For example, Figurel illustrates three frames of video v; with frame size of
3x3. We can use 9 bits to represent the contents of each frame and the frame vy is
denoted as (010 010 010). That is, we'list the contents in bits row by row.

-l
|

Vi1 Viz || V13

i | . 1 .
Figure 1. Three frames, ofwidee.v{ with frame size of 3x3

Definition 1. A spatial pattern (spattern for short) is defined as (ai8;...a42), where &;
=0orl,i= 1,2,...,92. The length of an spattern is defined as the number of 1-bits in
the spattern. An spattern of length | is called an |-spattern. For example, the first frame

of the video shown in Figure 1 can be denoted as (010 010 010), which is a 3-spattern.

Definition 2. A pixel in a video is denoted by (X,y,t), where (X,y) is the coordinate of
the pixel in frame t. A pixelset contains a set of pixels. For example, the first frame of

the video shown in Figure 1 can be denoted as {(2,1,1), (2,2,1), (2,3,1)}.

Definition 3. Given two spatterns S=(a1@...a52) and S=(bib,...bg2), where 1<i<d?
If there exists an integer j such that if bj+j=1 when g=1, j=kk+1, ..., |, we can say that
Sis contained by S, denoted as SCS, where ay is the first 1-bit and & is the last 1-bit

in S We can also say that Sis a sub-spattern of S, or S is a super-spattern of S
8

Moreover, an spattern Sis contained by a video if there exists a frame containing Sin

the video. For example, S=(110 100 000) is a sub-spattern of S=(011 110 000).

Definition 4. If an spattern Sis contained by the tth frame of video v, the reference
point of Sis denoted as (X,y,t,v), where (X,y) is the coordinate of the uppermost and
leftmost pixel of Sappearing in frame t. For example, the reference point of 3-spattern
(010 010 010) appears in the first frame of video 1 shown in Figure 1. Thus, its
reference point can be denoted as (2,1,1,1). The reference points of 2-spattern (100

100 000) are (2,1,1,1) and (2,2,1,1).

Definition 5. The support of an spattern S denoted as sup(S), is defined as the
number of videos containing Sin the database. Sis frequent if sup(S) is not less than a

user-specified minimum support thresheld; minsup.

Definition 6. A frequent spattern Sis'€losed ifithiere does not exist any super-spattern

of Swith the same support. = Nl

Definition 7. The projected- database pEj(S) lof an:spattern S contains a set of
reference points of the frames o’o‘ntaﬁﬁng S in'th_g database. The prj(S) of 2-spattern
S=(100 100 000) in video V1 shown in Figure 1 is {(2,1,1,1), (2,2,1,1), (2,1,2,1),
(2,2,2,1), (2,1,3,1), (2,2,3,1)}. It means that the 2-spattern appears at (2,1) and (2,2) in
the first frame, at (2,1) and (2,2) in the second frame, and (2,1) and (2,2) in the third

frame of vy.

A video pattern is formed by a sequence of spatterns. To represent a video
pattern flexibly, we introduce a time span between two adjacent spatterns in the video
pattern, where a time span is denoted as [tj, t2], t1and tpare positive integers, t1<<tp. It

means that the distance between both adjacent spatterns can be from t; to t; frames.

Definition 8. A video pattern (or vpattern for short) is defined as S[ti, ti2]S[t21,
t2]Ss...S, where S is an spattern, i = 1, 2,..., k, and the time span between § and S+1

is [tj1, tjz]. The length of a vpattern is defined as the number of spatterns in it. A

vpattern of length K is called a k-vpattern. A 1-vpattern, which is also an spattern, does
not have any time span. That is, an spattern is a special case of vpatterns. For example,
the 3-vpattern in video v4 shown in Figure 1 is denoted as (010 010 010)[1,1](011 010
010)[1,1](011 110 010).

Since a vpattern can span many frames, discovering all such vpatterns would
require a lot of resources, but a user may only be interested in vpatterns that span a
certain number of frames. Therefore, to avoid wasting resources by mining unwanted
vpatterns, we introduce a parameter called maxinterval. When mining vpatterns in a
video database, we only find the vpatterns where the time span between any two

adjacent spatterns in the vpatterns is not greater than maxinterval.

Definition 9. A vpattern V=5 [t11, t12]Sftas, 122]Ss...S is contained by another
vpattern V'=S 1[t’ 11, ' 12]S o[t' 21, 1'22]S 3...S|.i.'f we.can find K spatterns Sj1, Sjo,...,
Sjkin V' such that § is contained by Sji.and [tiy, 1i2] 15 equal to [tjis, tjiz], where 1<i<k,
and k<|. We can also say that. \.is a subﬁattern of V',.or V' is a super-pattern of V,
denoted as VCV'. For example; V=(10() 112) 100)[1,31¢010 111 010)[1,3](001 011 001)
is contained by V'=(111 111 1005[.1,3i(011 111 610)[1,3](001 011 001).

Definition 10. A vpattern V=§[t11, t12]S[t21, 122]Ss...S is contained by a video if we
can find k frames, f;, fa,..., fx, in the video so that f; contains S, and the time span

between fj and fj+1 is within [tj1, tj2], where i=1,2,..., kand j=1,2,..., k-1.

Definition 11. The support of a vpattern V, denoted as sup(V), is defined as the
number of videos containing V in the database. V is frequent if sup(V) is not less than

a user-specified minimum support threshold, minsup.

Definition 12. A frequent vpattern V is closed if there does not exist any super-pattern
of V with the same support. Note that if $[1,2]S and $[1,3]S have the same support,
Si[1,3]S is not closed since [1,3] contains [1,2] and $[1,3]1Si1s less expressive.

10

Definition 13. The projected database prj(v) of a vpattern v is donoted as {(t1,v1),
(t2,V2),...,(tm,Vm)}, where Vv appears in video V; and starts from frame t;, and (ti, v),

1<i<m, are sorted in ascending order.

-) A
EEEEEE

(a)
= i ol :
5 A () I R

ideo database
i v : y =
Figure 2(a) shows a-wde@d]l ba_% c taﬂh‘lng two videos Vi and Vz, where

Flgure 2. A

|

each video has three frames. Agsume J:l;afgmlw p=2 and maxinterval=2. The video
pattern V= (010 010 010)[1,1](011" 010 010)[1 1](011 010 010) is frequent as shown
Figure 2(b). The projected database prj(V)={(1,1),(1,2)}

The objective of the proposed method is to find the frequent closed video
patterns in a video database with respect to the user-specified minimum support and

maximum interval threshold.

11

Chapter 3 Our Proposed Method

In this chapter, we propose a novel algorithm, called CVP (Closed VPattern
mining), to mine closed vpatterns in a video database. First, we devise two data
structures, called rplist and CV-tree, to store frequent spatterns. By exploiting the
CV-tree and rplists, the CVP algorithm mines frequent closed patterns from a video

database in a depth-first search (DFS) manner.

3.1 Rplist and CV-tree

To store the information of projected database prj(S) of a frequent spattern S
during the mining process, we deyise a.data structure, called reference point list (rplist

for short).

Definition 14. P{ry,ro,...,rm} is an rpliﬁ;:_iggﬁ@fe P is a vpattern (or spattern) and r; is
the reference point of frame contaihing-ﬁ;?, I<i<m. ;For example, the rplist of the
vpattern (100 100 000) in the video décltabase shbwn in Figure 2 is denoted as (100 100
000) {(2,1,1,1), (2,2,1,1), (2,1,2,1),.(2,2,2,1), (2,1,3,1), (2,2,3,1), (2,1,1,2), (2,2,1,2),
(2,1,2,2), (2,2,2,2), (2,1,3,2), (2,2,3,2)}.

To generate all frequent spatterns, we first have to generate all possible
candiadate 2-spatterns. Let us consider how to generate all possible candidate

2-spatterns for a video database with frame size of gxg.

Lemma 1. There are at most 292-29 possible candidate 2-spatterns in a video database

with frame size of gxg.

Proof: For a frame size of gxg, if we fix the first pixel of the candidate 2-spattern at
(1,1), we can generate (g*1) candidate 2-spatterns since the pixel can be combine
with the other pixel in the rest of cells to form a candidate 2-spattern. If we fix the

first pixel of the candidate 2-spattern at (i,1), we can generate (g-1) candidate

12

2-spatterns since the pixel can be combine with the pixel in the first column except

(1,1), 2<i<g. Therefore, we have (g*1)+(g-1)*(g-1)=2g*2g candidate 2-spatterns.

For example, we have 12 candidate 2-spatterns for a video database with

=1,
)
7 2

Figure 3. Candidate 2-spatterns with frame size of 3x3

frame size of 3x3, as shown in Figure 3.

IEIRIE
NN

By scanning the video database.oncé 10 count: the support for each possible
candidate 2-spattern, we can obtain al-l*-;freq}u‘eillt 2-patterns and record the projected
database of each frequent 2-spaﬁem|‘f;;3;§§i£é iTcm rplist. Then, we put the rplists of
those frequent 2-spatterns to. the seqlo_lnd -;!é'velli bf the 'CV-tree, which is designed to
store the patterns generated durigg-thl: Irnining ﬁrlC)'.(:ess.

Definition 15. Each node in the CV-tree is an rplist and has two kinds of children, that
are used to record the video patterns grown in the spatial and temporal dimensions,
respectively. The nodes grown in the spatial dimension are called s-nodes while the

nodes grown in the temporal dimension are called t-nodes. The root of a CV-tree is a

null pattern, {J}. The pattern of the parent node of vpattern P is a sub-pattern of P.

For example, the CV-tree shown in Figure 4 contains all frequent 2-spatterns
in the example video database shown in Figure 2. The nodes of frequent 2-spatterns in

the CV-tree are placed in the same order as they are generated, so do all k-patterns.

13

{9}

{110 {100 {100 {100 {010 jo10 {001
000 100 010 000 100 000 100
000) 0o0) 000} 100) 000} 100) 000)

oA O

f21.21), {(2111) {1,2331) 42111), {3121), 43.121), {(313.1),
(1.2,3.1), (2211) (2112), (2121} (2131) (3131) (3122)]
{(2,1,31), {2121) (1,222} {213.1) (3131} {31232),
(2,2,1.2), (2221), (2,1,1,2), (3,212), (3132)}
(1,2,2.2), (2131), (2,1,2.2), (2,1,2,3),
(21,2.2), (2231), (2,1,3.2)} (3,1,2,2),
(21,3.2)} (2.1.12), (3.1.3.2)}

(2,2,1,2),

(2,1,2,2),

(2,2,2,2),

(2,1,3.2),

(2,2,3.2)}

[=i |]
| R S B vl
Figure 4. The CV—trelé |con__%_un1ng frequent 2-spatterns

el

3.2 Pattern generation

By joining two K-spatterns in the CV-tree, it generates a new (k+ 1)-spattern
and the rplist of the new spattern is the intersection of rplists of two k-spattern. By
using the rplist intersected, we can count the support of the newly generated spattern.
If the support is not less than minsup, we can add the rplist of the newly generated

spattern to the CV-tree.

To join 2-spatterns P and Q in a video database with frame size of gxg, we
have to shift the first pixel of P to match that of Q to avoid generating duplicate
spatterns. If any pixel in the shifted P is greater than (g, g), we say that shifted P is not

a valid pattern. Thus, the join operation is not allowed.

14

Definition 16. Any two frequent 2-spatterns S; and $ are joinable. The spattern of §
joining to & is equal to §vS, which is a 3-spattern, where v is the logical OR
operator for a bit-string. The rplist of the joined spattern is equal to the intersection of

the rplists of S; and S.

For example, in Figure 4, the spattern of the first node (110 000 000) is
joinable to (100 100 000) since the first pixels of both spatterns are at the same
location. The intersection of the rplists of both spatterns are {(2,1,2,1), (2,1,3,1),
(2,2,1,2), (2,1,2,2), (2,1,3,2)}. The joined spattern is equal to (110 000 000)v(100 100
000)=(110 100 000), as shown in Figure 5(a), which is a 3-spattern with the support
equal to 2. If minsup=2, the joined 3-spattern can be added to the CV-tree and

becomes a child node of the node of (110 000 000).

S

(a)

M“i%:

(b)
% 78

(©)

. - 2

(d)

Figure 5. Joining two spatterns

However, when the first pixels of both joining 2-spatterns are not at the same

location, we fix the location of the latter 2-spattern and shift the former 2-spattern

15

such that the location of first pixel of the former one is the same as that of the latter
one. For example, to join both 2-spatterns (110 000 000) and (010 100 000) as shown
in Figure 5(b), we shift the former spattern to (011 000 000) as shown in Figure 5(c)
and then join both spatterns as shown in Figure 5(d). Finally, we can obtain a

3-spattern (011 100 000). Next we define a set of joinable nodes called joinable class.

Definition 17. Two frequent K-spatterns S; and S are joinable if both share the first
(k-1) pixels, k>3. The joined spattern is equal to S;v S, which is a (k+1)-spattern. The

rplist of the joined spattern is equal to the intersection of the rplists of § and $.

Definition 18. The joinable class of a frequent k-spattern S is JC(S={S,S,S},
where Sis joinable to § and § is a frequent k-spattern, k>2, 1<i<n. Note that the rplist
of S is a sibling node of the rplist of S That is, the rplists of § and Sshare the same

parent in the CV-tree.

Definition 19. Two frequent k—vpatter'l'}s_.‘l:\d{_l_and V; are joinable if both share the first
(k-1) spatterns, the last spatterns|of bQFh ;:Eéft-ferns ate joinable, and all the time spans
of both vpatterns are the same,. k22 The j-(‘:):ined. Vpatte;rn 1s obtained by replacing the
the last spattern of Vi with the joined spattern of both last spatterns. The rplist of the

joined spattern is equal to the intersection of the rplists of V3 and V.

Definition 20. The joinable class of a frequent k-vpattern V is JC(V)={V1,V2, ...,Vi},
where V is joinable to V; and V; is a frequent k-spattern, k>2, 1<i<n. Note that the
node of V; is a sibling of the node of V. That is, the nodes of V; and V share the same

parent in the CV-tree.

During the process of pattern generation, we first grow frequent video patterns
in the spatial dimension and then grow them in the temporal dimension. To grow the
frequent video patterns from a node of the CV-tree in the spatial dimension, we join
the vpattern (P) of that node to each vpattern in P’s joinable class. If the joined pattern
is frequent, it is added to the CV-tree and becomes the child node of node P. The

procedure is repeated in a depth-first search manner until no more frequent vpatterns
16

can be found.

To grow the frequent video patterns from a node of the CV-tree in the temporal
dimension, we first mine the frequent 2-spatterns in the projected database of the
vpattern of that node so that the distance between the vpattern and each frequent
2-spattern mined is not greater than maxinterval. For each frequent 2-spattern mined,
we append it to the vpattern to generate a new video pattern Q and compute the time
span between the vpattern and 2-spattern. Next, we grow Q in the spatial dimension as

the steps described above.

Let us consider how to mine vpatterns by a CV-tree as shown in Figure 6,
where a part of the growing processes both in the spatial and temporal dimension is
shown. In Figure 6, we use the example wvideo database in Figure 2 to explain the
process of growing patterns in the spatial .a.'nd temporal dimensions. Assume that
minsup=2 and maxinterval=2. After putting all-frequent,2-spatterns to the second level
of the CV-tree, we generate patterns’f'rgiyi-_.-,the first 2-spattern (110 000 000) The
2-spattern (110 000 000) can be joiried toreach pattein in its joinable class, namely,
(100 100 000), (100 010 000), (130.0 0:00 100), (610 100000), (010 000 100), (001 100
000). By joining (110 000 000) to each pétterh in its joinable class, we obtain three
frequent 3-spatterns, namely, (110 100 000), (110 000 100) and (011 100 000). We
add these 3-spatterns to be the child nodes of node (110 000 000). Next, we grow the
patterns from the 3-spattern node (110 100 000) in the same way and obtain two
frequent 4-spatterns, (110 100 100) and (011 110 000). By joining both 4-spatterns,
we obtain a S-spattern node (011 110 010). At this point, we find that the joinable
class of the 5-spattern is empty. Thus, no new spattern can be generated. Therefore,

we finish growing the patterns in the spatial dimension.

Next, we start to grow the patterns in the temporal dimension. The projected
database of the 5-spattern (011 110 010) is {(2,1,3,1), (2,1,2,2)}. We mine frequent

2-spatterns in the projected database so that the distance between every 2-spattern and

17

the 5-spattern is not greater than the maxinterval. Nevertheless, we cannot find any
frequent 2-spattern in the projected database. Then, we backtrack to node (110 100
100) and grow the patterns from this node in the temporal dimension. The projected
database of (110 100 100) is {(2,1,2,1), (2,1,3,1), (2,1,2,2), (2,1,3,2)}. We can mine
five frequent 2-spatterns from the projected database, namely (110 000 000), (100 100
000), (100 000 100), (010 100 000), and (010 000 100). The projected database of the
first frequent 2-spattern (110 000 000) is {(1,2,3,1), (2,1,3,1), (2,1,3,2)}. We compute
the time span between the 4-spattern and the 2-spattern, which is [1,1]. Then we
append the 2-spattern (110 000 000) to the 4-spattern to generate a new 2-vpattern,
(110 100 100)[1,1](110 000 000). Similarly, we can find other four four 2-vpatterns as

shown in Figure 6.

Then, we can grow the pattern: from (110100 100)[1,1](110 000 000) in the
spatial dimension. We can obtain fwo 3-spatterns, (110100 000) and (110 000 100),
and one 4-spattern, (110 100 100). Tlll.at‘::i_s‘,.‘;ye. can obfain three v-patterns, (110 100
100)[1,1](110 100 000), (110 100 100)[1,.317-;(}.10_000 100), and (110 100 100)[1,1](110
100 100). For each spattern obtained,!We néed to grow the patterns from it in temporal
dimension. The steps described above will “be ..recursively in a depth-first search

manner until no more patterns can be found.

18

o}

H2121){1231) ="
5,:@ EEOREAEEA

121321

:E__ﬁ_gl — — . the start growing node

2121) H2121) fj21343). PN T, T -
2131) {2131} (2a232)

2212}, {2123}

{2123 f2A32R

12,1321}

I EE N

2121} f2131) §1231) §2433) H1231) H2131) {2134) {3434)

#34.34),
(2131} 21221 (2131) (2234). 1222) 2422). {3133} {3122) {3122R
z12.2, 122321 (2122 (21321] j2a22) (3132
2132 21232, (2222 3122
2132) (2133 3132p
z232p

A e B E

§2.431) f1234) 02133) f2433) §24341) §5431) #2434 {1231) §2a31) {2a34) H2133) {2133) H2433) #3431 H3133) {3133)

{21221 §2434) (2234) (2432) (3434) 3a3zp 21232 12220 (2423) (24230 (24232) (242210 1212210 (3423) (3a22) 3122
2132p {21332} 313218 {21325

{2132 {2132 13132

EmE 0w B 4

________________ (Rl (E2
2431} f2431) 2131} {1313.1). #2131). f2131). 2131} #2131). {i313.1).
{2132) 2A32p 2432) 13132 12123} 21221 {21225 24221 13422

i {23z
gy [=
| == I (=) I

#2131} {2131},

21321 21221

Figure 6. Growing patterns in the spatial and temporal dimensions

19

B
53 53 53
C
S
T T ' e |
Dig i, i, il |

L - [I | I) S——

H'=7773
‘IS FIs: T, |
N s-node
Gi ! mmmme- t-node
| B

Figure 7. The growing fé%resentation of the CV-tree

To explain our concept more clearly, we use the example shown in Figure 7 to
demonstrate the growing process, where the s-nodes and t-nodes are generated in the
DFS manner recursively. In this example, we start from node A of a 2-spattern. Three
s-nodes of 3-spatterns are generated from node A by joining the pattern of A to the
patterns in its joinable class, where the joinable class of A contains the sibling nodes
of A. Next, one s-node of a 4-spattern is generated from node B and no s-node can be
grown from node C. Thus, we start to grow t-nodes by mining frequent 2-spatterns
from the projected database of C so that the time span between the pattern of C and
cach frequent 2-spattern mined is not greater than maxinterval. Then, we append four
frequent 2-spatterns mined to C and form four frequent 2-vpatterns, each of which

consists of one 4-spattern and one 2-spattern.

For the vpattern of node D, we continue to generate two 3-spatterns E and F in

the spatial dimension. No s-node and t-node can be generated from node E. Thus, E is

20

a leaf node. No s-node but one t-node G can be grown from node F to form a
3-vpattern. Then, we backtrack to node D and start to grow t-nodes from it. Since we
can find a frequent 2-spattern H, a new 3-vpattern can be formed. Since H is a leaf
node, we backtrack to node D then node C, and go to node |. The steps described
above will be repeated in a depth-first search manner until no more patterns can be

generated.

3.3 Closurechecking and pruning strategies

We apply a similar concept used in CHARM [21] to perform pruning
strategies and closure checking. There are two phases in our pruning strategies,
namely, spattern pruning and vpattern pruning. We propose four rules in the first
phase to prune unnecessary spatterns.-In theisecond phase, we generate t-nodes only
from the closed vpatterns or non-closéd vpattetns with different projected database in
the temporal dimension. After ﬁnishing} _the -bruning .strategies of both phases, we

perform the closure checking for'each poé?égb-lé vpatterns and output closed vpatterns.

Let P and Q be two jdi'nab:le k—spattém_s in-a joinable class C, and their
projected databases be prj(P) and pfj (Q), réspéctively. Let R be the pattern generated
by joining P and Q, and prj(R) be the projected database of R. There are four kinds of
relationships between prj(P) and prj(Q), namely, (1) prj(P) = prj(Q), (2) prj(P) c
prj(Q), (3) prj(P) o prj(Q), and (4) prj(P) # prj(Q). Based on these four relationships,

we adopt four different ways to prune unnecessary spatterns.

L. If prj(P) = prj(Q), pri(R) = prj(P) M prj(Q) = prj(P) = prj(Q). Thus, we can
simply replace every occurrence of P with R, and remove Q’s rplist from the

CV-tree since it is not closed.

2. If prj(P) < prj(Q), prj(R) = prj(P) N prj(Q) = prj(P). We replace every

occurrence of P with R
3. Ifprj(P) o prj(Q), prj(R) = prj(P) n prj(Q) = prj(Q). In this case, we add R’s

21

rplist to P’s joinable class, and remove Q’s rplist from C since R occurs in

wherever Q occurs.

4. 1If prj(P) # prj(Q), we cannot eliminate any pattern of both P and Q, just add

Rto P’s joinable class.

Figure 8 shows the four relationships and the corresponding pruning processes.
In Figure 8(a), if prj(P) = prj(Q), we replace P with the newly generated spattern R
and delete Q from the CV-tree. Because Q’s projected database is as the same as P’s,
R can be used to generate all possible spatterns which can be generated from Q. Then,
the newly generated spattern will join to the spatterns in P’s joinable class. In Figure
8(b), if prj(P) c prj(Q), it means that P’s projected database is contained by Q’s. In
this case, we replace P with the newly generated'spattern R. In Figure 8(c), if prj(P) o
prj(Q), it means that P’s projected-databasé éoniains Q’s. We add R’s rplist to P’s
joinable class and remove Q’s‘rplist from C smce R'eccurs in wherever Q occurs. In

Figure 8(d), if prj(P) # prj (Q) we cannof""hmlnate any pattern of both P and Q, just

add Rto P’s joinable class. .i

P Q Neivp Q

| =y
I EEEEEN I I h BEEEEEN
| | | S\

— — —] — —]

{12,1,2,1), {[[22:::; {12,1,2,1), fl2.1,2,1),

(2,1,3,1),) 4 [2,1,31), (2,1,3,1)

Ei:i; 2l (2,2,1,2), (2,2,1,2)

,1,2,2), .1.2,2), (2,1,2,2), (2,1,2,2)
(2,1,3,2)} (2,1,2,2)} (2,1,3,2) (2,1,2,2)}

N -
R

{l2,1,2,1}, fl2,1,2,1),

(2,1,3,1), (2,1,3,1],

(2,2,1,2), [2,2,1,2),

(2,1,2,2), (2,1,2,2],

(2,1,3,2}} (2,1,3,2]}
(a)

22

P Q
[o——
| I
| I
221, (2121)
(2,1,2,1), (2,1,3,1],
(2,1,3,2]} (2,2,1,2),
[2,1,2,2),
(2,1,3,2)}

R r:
fl2,1,2,1),

(2,1,2,1),
(2,1,3,2]}

P Q

I———I

| I
I

| =—.
{l2,1,2,1), {l2,1,2,1),
(2,1,3,1), (2,1,2,2]}

[2, 2,1,2 :I,
[2, 1,2,2 :I,
[2, 13,2 j}
R r
{[2, 1,21 :I,
[2, 1,2,2 :IIL

.

(b)

(c)

23

New P Q
| r | r
I
L I
—]
{l2,1,2,1), {l2,1,2,1),
A& [2,131) [2,1,3,1),
(2,1,3,2)} (2,2,1,2),
(2,1,2,2),
(2,1,3,2)}

R r:
{[2-'1-'2-'11'
[2_,:[,3,:l:lJ
[2_,1,3,2“'
P Q
I —— —
] =sil= e
| N
|. —_ Y
{[2,1_,2,1:IJ '[[2,1_,2,13J
(2,1,3,1), (2,1,2,2)}
[2.'2.'1.'21'
[2,1,2_,2;,
[2,1,3_,2”'

—
fl2,1,2,1), {l2,1,2,1),
(2,1,2,1), (2,1,2,2),
(2,2,1,2), (2,2,3,2)}

(2,1,2,2),
[EJLM
R r

{[2.I 1.12.'11'
(2,1,2,2)}

(d)

Figure 8. Four pruning strategies

We only grow the vpatterns- fiom a Clesed vpattern or a non-closed vpattern
with different projected database’ in the,temporal dimension. First, we check if the

—

growing node is closed or it is non-_clos;?:bht has different projected database with
closed vpatterns. If this is the cés:e, we .igroi;i; t-nddes fré'm it in the temporal dimension.
After an s-node is grown from a ﬁodel, we put tﬁe newly generated vpattern to a closed
pattern set and check if the new vpattern‘is closed. There are five cases as shown in
Figure 9. First, if B contains A and the projected database of B also contains that of A,
A is not closed, where A is a 1-vpattern in the CV-tree and B is a 1-vpattern in the
closed pattern set. Thus, we mark node A in the CV-tree to indicate that it will not be
grown in the temporal dimension, as shown in Figure 9(a). Second, if both A and B
are the same and share the same projected database, A is not closed. Thus, we mark
node A in the CV-tree to indicate that it will not be grown, as shown Figure 9(b).
Third, if A is contained by B and sup(A)=sup(B), but the projected database is not
contained by that of B, A is not closed but it will still have to be grown t-nodes later,
as shown in Figure 9(c). Fourth, if A contains B and the projected database of A

contains that of B, A is added to the closed pattern set and B is removed from the

closed pattern set at the same time, as shown in Figure 9(d). Finally, if A and B do not
24

contain each other, A is added to the closed pattern set, as shown in Figure 9(e).

- B

{(1,2,2,1), (2,1,2,2), (2,1,3,2)}

(@)

A

{(1,2,2,1), (2,1,2,2), (2,1,3,2)}

|

Closed Pattern Set

{(1,2,2,1), (2,1,2,2), (2,1,3,2)}

Figure 9. Closure checking in vpattern pruning

3.4 TheCVPalgorithm

The CVP algorithm mines all frequent closed vpatterns in two dimensions,
namely, spatial and temporal. It first grows frequent video patterns in the spatial
dimension and then grows them in the temporal dimension. To grow the frequent
video patterns from a node of the CV-tree in the spatial dimension, we join the

vpattern (P) of that node to each vpattern in P’s joinable class. If the joined pattern is

25

frequent, it is added to the CV-tree and becomes the child node of node P. The
procedure is repeated in a depth-first search manner until no more frequent vpatterns

can be found.

To grow the frequent video patterns from a node of the CV-tree in the temporal
dimension, we first mine the frequent 2-spatterns in the projected database of the
vpattern of that node so that the distance between the vpattern and each frequent
2-spattern mined is not greater than maxinterval. For each frequent 2-spattern mined,
we append it to the vpattern to generate a new video pattern Q and compute the time
span between the vpattern and 2-spattern. Next, we grow Q in the spatial dimension as

the steps described above.

The CVP algorithm is shown. inyFigure 10, which contains three functions:
CVPGrowth, GrowSNode and GrawSNode. They are shown in Figures 11, 12, and 13,

respectively.

— -..

Algorithm: CVP =

Input: a video database D, a minimﬁr'p sgpporlt threshold minsup, a maximum time

span threshold maxinterval &\ ' ;

Output: all closed vpatterns CV =

(1) Scan the database D to find all frequent 2-spatterns, collect all frequent
2-spatterns found into Cp, and add the rplist of each frequent 2-spattern found to
the second level of the CV-tree;

(2) Let CV=O;

(3) for eachPin C,do

4) CVPGrowth(P,CV);

(5) end for

(6) for each vpattern Q in CV do

@) Check if Q is closed;

(8) if Qis not closed then

9 Delete Q from CV;

(20) end if

(11) end for

(12) return CV;

Figure 10. The CVP algorithm

26

As shown in Figure 10, we first scan the video database to find all frequent
2-spatterns in step 1. For each frequent 2-spattern found, we call the CVPGrowth
function to grow video patterns in both spatial and temporal dimensions. For each
video pattern found, we check if it is closed. If this is the case, the video pattern will

be added to CV.

Function: CVPGrowth

Input: a vpattern P, all closed vpatterns CV
Output: all closed vpatterns CV

(1) AddPtoCV;

(2) Cmw1=GrowSNode(P);

(3) iIf (Cre12D) then

4) for each Q in Ci1 dO

®) CVPGrowth(Q,CV);

(6) end for

(7) endif \ |
(8) if Pisa closed k-vpattern then "mf
(9) Cn+1=GrowTNode(P);
(10) if (Cov12D) then

(11) for each Rin C+1do

12) CVPGrowth(R,CV);
(13) end for

(14) end if

(15) end if

Figure 11. The CVPGrowth function

The CVPGrowth function consists of two parts. First, it calls the GrowSNode
function to grow the video patterns in the spatial dimension. Then, it calls the
GrowTNode function to grow the video patterns in the temporal dimension. For each
newly generated video pattern, we recursively call the CVPGrowth function to grow

video patterns in both spatial and temporal dimensions.

27

Function: GrowSNode

Input: an m-vpattern P

Output: a set of (m+1)-spatterns Cps1
(1) Let Cy1=9;

(2) for each Sin JC(P) do

(©)) if Sis joinable to P then

4) Generate a (m+1)-vpattern T by joining P to S

) If T is frequent, append the rplist of T to be a child node of P and add
Tto Ch1;

(6) end if

(7) endfor

(8) return Cpun;

Figure 12. The GrowSNode function

In the GrowSNode function, we join.P to every vpattern in P’s joinable class,
where T is the vpattern generated by joining Pto S IETis frequent, we append T’s to

be a child node of P in the CV-tree!

=NIF

Function: GrowTNode

Input: a vpattern P

Output: a set of 2-spatterns Cps1

(1) Let Ch1=;

(2) Mine the frequent 2-spatterns in P’s projected database so that the distance
between P and each frequent 2-spattern mined is not greater than maxinterval.
Collect all frequent 2-spattern mined into C.

(3) for each Sin C,do

4) Append Sto P to generate a new vpattern Q;

(5) Compute the time span between the last two spatterns of Q and collect Q
into Cp+ 1.

(6) end for

(7) return Cpiq;

Figure 13. The GrowTNode function

In the GrowTNode function, we first mine all the frequent 2-spatterns in P’s

projected database so that the distance between P and each frequent 2-spattern mined
28

is not greater than maxinterval. For each frequent 2-spattern mined S we append it to
P to generate a new vpattern Q and compute the time span between the last two

spatterns of Q. That is, we compute the time span between P and S

3.5 Anexample

In this section, we use the example database shown in Figure 2 and apply our
proposed pruning strategies to illustrate how the CVP algorithm works to mine closed
vpatterns. The process of growing s-nodes and t-nodes are already represented in
Section 3.2 and Figure 6. We can get all frequent vpatterns if we continue growing as
the manner explained in Figure 6. After applying our pruning strategies and the

closure checking, we can get all closed vpatterns finally.

As demonstrated in Figurej-14,ffom the first 2-spattern (110 000 000), three
3-spatterns can be grown and appende'c} o it/ Then, the'spattern (110 000 000) can be
viewed as a vpattern with length. 1 qnd %’é-'-édd the 1-vpattern (110 000 000) to the
closed pattern set and check if .itf 18 cllolsed:iBec_éuse thé closed set is empty, we add it
to the closed pattern set directly..In a DFS manner, we next grow the patterns from the

3-pattern node (110 100 000).

Since prj((110 100 000)) o prj((110 000 100)) and prj((110 100 000)) >
prj((011 100 000)), we remove the nodes of (110 000 100) and (011 100 000) from
the CV-tree but generate a new 4-spattern node (110 100 100) to be the child node of
(110 100 000). After growing s-nodes for (110 100 000), we add it to the closed
pattern set. Since the 1-vpattern (110 000 000) in the closed pattern set is contained by
(110 100 000), we replace (110 000 000) with (110 100 000) in the closed pattern set
and mark the node (110 000 000) in the tree to indicate that it is not closed and cannot

be grown.

29

— — — the start growing node

—r—e s-node
t-node
———— - f‘?;j}k"x?

% unclosed mark

{@}

T NS

l2,1,2,1), (1,2,3,2), [
(2.1,2.1), (2,2,1,2),

_*'I
(1,2,2,2), [2,1,2,2), E' ﬁ E ﬁ @ @ @

(2,1,3,2)}

{l2,1,2,1),
(2,1,3,1),
(2,2,1,2},
(2,1,2,2),
(2,1,3,2)}

=

{lz,1,2,1), f[2,1,3,1)

(2,1,3,1),
(2,1,2,2),
(2,1,3,2]}

(2,1,2,2)}

R

flz,1,2,1) {2,331 1,231, {2131} guz31), 2131, {2131), {2131}, {3.12.1)

(2,121}, (2,,2,2)} (2,2,2,1}, (2,231}, q(i,2,2,2)} (2L22), (3,121}, (2,1,2,2), (2,1,2,2)}
(2,1,2,2), (1,2,2,2), (2,1,2,2), (2,1,3,2)} (2,1,2,2), (3,.,22)}
(2,1,3,2)} (2,1,2,2), (2,2,2,2) (3,1,2,2),

(2,1,2,2)} (2,1,3,2) (2,1,2,2)}

[2,2,3,2)}

ﬁ 5 N

{f2,1,3,1), {i1,2,3,1), {2,131} {2,1,3,1),
(2,1,3,2)

(2,1,2,2)} (2,1,3,1),
(2,1,3,2)}

B E N

2120, 1o131) f2.1,3.1),
2132 p330p (2.1,3.2)

ys

f2,1,2,1),
[2_, 1, 3_,2“'

(2,231,
(2,1,2,2),

reElace (2,2,3,2)
AN /_

{l2,1,3,1),
[3,1,3,1),
[2,1,32,2)}

{2,1,3,1),
(2,1,2,2)}

12,2,2,1), f12,1.3,2), {21,3,1), {1,231}, fl2.1,3,1) f2,1,3,1), {2,1,3.1), {3,1,3,1), {,1,3,1),

(2132 (2122), (21,22), (1,222} (2,122}, (2,1,2,2} (21,220} (3,2,2,2), (3..2.2)
(2,1,3,2]} (2,1,2,2)} (2,1,3,2) (2,1,3,2)

._EL_.‘F_.. *
LM .} Cif
L ________E_! ==
flz,1,3,1), {iz,1,3,1), {2,1,3,1),
(2,1,2,2), [2,1,2,21} (2,1,2,2)}
(2,1,3,2)

R

i !

L |

fl2,1,3,1),

(2,1,2,2)}

Figure 14. Growinéoclosed vpatterns

Then, we grow the patterns from the 4-spattern node. Since prj((110 100 100))
D prj((011 110 000)), we remove the 4-spattern node (011 110 000) and grow a new
S-spattern (011 110 010). Then we compare (110 100 100) with (110 100 000) which
is in the closed pattern set, we find (110 100 000) is not closed and it is contained by
(110 100 100) so we replace (110 100 000) with (110 100 100) in the closed pattern
set. For the non-closed node (110 100 000) in the tree, prj((110 100 000)) is different
from prj((110 100 100)) where (110 100 100) is a closed 1-vpattern in the closed
pattern set so the node (110 100 000) still has to be grown in the temporal dimension
later. Next, we continue growing the patterns from 5-spattern (011 110 010) and find
that no s-nodes can be grown from this node. Since the newly generated 1-vpattern
(011 110 010) is closed after the checking, we add it to the closed pattern set and
replace the non-closed 1-vpattern (110" 100 100)..Then we try to grow t-nodes from
the 5-spattern. However, no tsnodes can be gfown. Thus, we backtrack to its parent
node (110 100 100) and grows five t-nt;de_s. From the first 2-spattern (110 000 000) in
t-nodes, two 3-spatterns are generated, W%’de'lete nodes (100 000 100) and (010 000
100) from the CV-tree. Then, we add tlhe 2::-'.Vpat.tern (1.10 100 100)[1,1](110 000 000)
to the closed pattern set. We ﬁﬁd this, newly_generated 2-vapttern is closed and it is
added to the closed pattern set. At this time, there are closed 1-vapttern (011 110 010)
and 2-vpattern (110 100 100)[1,1](110 000 000) in the closed pattern set. To grow the
patterns from the generated 3-spattern (110 100 000), we find that prj((110 100 000))
= prj((110 000 100)). Thus, a new 4-spattern (110 100 100) is generated. Applying our
pruning strategies, the 3-spattern (110 100 000) is replaced with the newly generated
4-spattern (110 100 100) as shown in Figure 14. Then we check if vpattern (110 100
100)[1,1](110 100 100) is closed. Since (110 100 100)[1,1](110 100 100) contains
(110 100 100)[1,1](110 000 000), we replace the latter vpattern with the former one
and mark the 2-spattern node (110 000 000) to indicate that it cannot be grown in the
CV-tree. For the 4-spattern (110 100 100) in the CV-tree, no s-nodes can be grown
and it is not closed. Thus, we mark it to indicate that it cannot be grown. Then we

backtrack to node (110 000 000) which is marked. Thus, it cannot be grown in the
31

temporal dimension.

We have presented the growing process of the first 2-spatern (110 000 000) in
the first level of the CV-tree. At this moment, we can get two closed 2-vpatterns in the

closed pattern set, as shown in Figure 15.

s 1
N
! —_— I
l 2.1,2,1), (213, !
| (213), (2122 |
| (2212, :
I 2,1,2,2),]
) S !
E"E"""""E'"":
1 1
! — i
| 112,1,2.1), 12131, |
12131, 2132 |
1 (2,1,2,2), !
i (2,1,3,2)} |

Figure 15. Cloééd _V;patterns in the closed pattern set

Similarly, we can repeat the above process in a depth-first search manner until
no more vpatterns can be found. Finally, we can obtain four closed vpatterns, namely,
(110 100 000)[1,1](011 110 010), (100 100 100)[1,1](011 110 010), (100 100
100)[2,2](110 100 100), and (100 100 100)[1,1](110 100 100)[1,1](110 100 100).

32

Chapter 4 Performance Evaluation

In this chapter, we conducted the experiments by using both synthetic and real
datasets to our proposed method with the modified Apriori algorithm [1]. Both
algorithms were implemented using Microsoft Visual C++ 2005. All the experiments
were performed on an IBM compatible desktop with an Intel Core 2 6300 CPU @
1.86GHz, 2.0 GB main memory, running on Microsoft Windows XP Professional.
Note that the support of a pattern is defined as the fraction of videos containing the

pattern in the video database in the experimental section.

The modified Apriori algorithm contains three phases. First, we mine all
frequent spatterns by using the Apriori property. [1] level by level and collect all
frequent 2-spattern into C,. Then, we.eheck ifieach: frequent spattern mined is closed

and then delete non-closed ones:

e

Second, we generate all possible Eghdidate 2-vpatterns by joining each closed
spattern to each 2-spattern in Cy, -wh'efe the time_spans between them include all the
possible combinations of time spans~So -that e;alch time span is not greater than
maxinterval. Then, we scan the video database to count the support for each candidate
2-vpatterns generated. If its support is not less than minsup, it is frequent. For the
frequent 2-vpatterns obtained, we expand their last spatterns by using the Apriori
property level by level. Thus, we can obtain all frequent 2-vpatterns in the database.
Then, we check if each frequent 2-vpattern mined is closed and then delete non-closed

oncs.

Third, we generate all possible candidate k-vpatterns by by joining each closed
(k-1)-vpattern to each 2-spattern in Cp, k>2, where the time spans between them
include all the possible combinations of time spans so that each time span is not
greater than maxinterval. Then, we scan the video database to count the support for

each candidate k-vpatterns generated. If its support is not less than minsup, it is

33

frequent. For the frequent k-vpatterns obtained, we expand their last spatterns by
using the Apriori property level by level. Thus, we can obtain all frequent k-vpatterns
in the database. Then, we check if each frequent k-vpattern mined is closed and then
delete non-closed ones. The steps in the third phase are repeated until no more video

patterns can be found.

4.1 Synthetic datasets

The synthetic generator used here is similar to the one used in Agrawal et al.
[1] with some modifications since the transaction here is a video. A video consists of a
sequence of frames and we fix the frame size to be a square of 100x100. Table 1 lists

the parameters and the default settings used.in the synthetic data generator.

Table 1. Parameters used togenerate synthetic data

Parameter Meaning Default setting

|4 Number of videos in a video database 1,000

F Average number of frames in ‘a video 10

SL Average length of spatterns \ 8
maxinterval | Maximum time span threshold 2
minsup Minimum support threshold 5%

P Average number of potential patterns 50

PL Average length of spatterns in potential patterns 10

4.2 Performance evaluation on synthetic datasets

In this section, we compare our algorithm CVP with the modified Apriori
algorithm by varying one parameter and keep other parameters at default values as

shown in Table 1.

Figure 16 shows runtime versus minimum support threshold, where the
minimum support threshold varies from 1% to 5%, the number of videos is 1000 and

the average number of frames in a video is 10. The CVP algorithm runs 3-6 times
34

faster than the modified Apriori algorithm. The modified Apriori algorithm is more
sensitive to minimum support threshold than the CVP algorithm. When the minimum
support threshold decreases, the modified Apriori algorithm generates a large number
of candidate patterns. However, the CVP algorithm localizes the support counting,
pattern joining, and candidate pruning in the projected database. Therefore, the
runtime of CVP algorithm increases slowly as the minimum support threshold

decreases.

900
800 .\
700 \\\
600 \\\
500 \
GO0 A 58 -

\.\ == Apriori
300

\. —o—CVP

200

100

Runtime (sec.)

Minimum support (%)

e w‘ TN
iy i -]
. . ;

Figure 16. R{mtimé Vf:}sus minimum support

4500
4000
3500
3000
2500
2000
1500
1000
500 -

== Apriori

Runtime (sec.)

——CVP

Number of videos (K)

Figure 17. Runtime versus number of videos

35

Figure 17 illustrates the runtime versus the number of videos, where the
number of videos varies from 2000 to 10000, the average number of frames in a video
is 10 and the minimum support threshold is 4%. When the number of videos increases,
the runtimes of both algorithms increase nearly linearly and our CVP algorithm can

run about 3 times faster than the modified Apriori algorithm.

600
500
g 400
2
(]
£ 300
=} == Apriori
[=
S 200
o ——CVP
100
O T T T T
1 2 3 4 5
Maximum time span
w I it o
E ﬁ\ u = ‘Ir ;;i‘r .
. T Y N ’ ey A
Figure 18. Rlintr‘l_r’n Magmum time span
3500

Yol

3000

2500 /
2000 /

1500 /

1000

=4—CV/P, Apriori

500

Number of closed patterns

Maximum time span

Figure 19. Number of closed patterns versus maximum time span

36

Figure 18 illustrates the runtime versus maximum time span threshold. Figure
19 shows the number of closed patterns generated versus the maximum time span
threshold, where the maximum time span threshold varies from 1 to 5, the number of
videos is 1000, the average number of frames in a video is 10 and minimum support
threshold is 5%. The CVP algorithm runs about 2.5 times faster than the modified
Apriori algorithm. Both algorithms increase smoothly in runtime. As the maximum
time span increases, the number of closed patterns also increases. However, the
modified Apriori algorithm generates more unnecessary candidate patterns while
maximum time span threshold increases so its efficiency is worse than the CVP

algorithm.

1400

1200

1000

800 ’//Q

600 / == Apriori
400 /.,// =o—CVP
200

10 15 20 25 30

Runtime (sec.)

Number of frames

Figure 20. Runtime versus number of frames

Figure 20 shows the runtime versus number of frames and Figure 21 illustrates
the number of closed patterns versus number of frames, where the number of frames
in a video varies from 10 to 30, the number of videos is 1000, the minimum support
threshold is 5%. Also, both algorithms increase smoothly in runtime but the CVP
algorithm runs faster. For the same reason, the modified Apriori algorithm generates

more unnecessary candidate patterns while the number of frames increases hence it

37

needs more time than the CVP algorithm. As shown in Figure 19, the number of
closed patterns increases when the number of frames increases. That means there are

more candidate closed patterns and we needs more time to check and prune.

2500
(%]
=
S
£ 2000 /
@©
Q.
© 1500
(7]
o
©
% 1000 —
- == CVP, Apriori
S
£ 500
=]
2
O T T T T
10 15 20 25 30
Number of frames
(. N\
. | ni=JdO |
Figure 21. Number of closefd_g.tt,grhs versus number of frames
x - |
ol
T

In summary, by using thle__prL{nling strat'F'gies'and the pattern growth methods,

the CVP algorithm can prune niaﬁ§ non-closed I;atterns. The advantage of the CVP
algorithm is that it can localize the suf)port counting, pattern joining and candidate
pruning in the projected databases. Therefore, the CVP algorithm is more scalable and

efficient than the modified Apriori algorithm.

4.3 Performance evaluation on real datasets

The real dataset consists of 100 videos, where we extract a frame every second
from a video. The videos are taken by ourselves. An example video containing three
frames are shown in Figure 22, where each frame is transformed into a binary image
with frame size of 20x20 as shown in Figure 23. The moving object marked in the

video is a person throwing a ball.

38

Frame 1 Frame 2 Frame 3
Figure 22. A real video dataset
Table 2. Parameters used in the real dataset
Parameter Meaning Default setting

|4 Number of videos in a video'database 100

F Average number offfdmes ifia,video 3

SL Average length of spatterns, 27
maxinterval | Maximum time span thgﬁhold 2
minsup Minimum support tfll#esh&d 5%

—

The default settings of the parameters used in the real dataset are shown in

Table 2, where the average length of spatterns is 27, the maximum time span

threshold is 2 and the minimum support threshold to 5%. Table 3 show the mining

result of the real dataset by using our proposed algorithm. Figure 3 shows a pattern

mined by our proposed algorithm. Because of the average length of spatterns of the

dataset is 27, it is longer than synthetic datasets in Section 4.2. The modified Apriori

algorithm will generate a large number of candidate patterns during the mining

process. That leads to out of memory for the modified Apriori algorithm. Hence, we

can compare our proposed algorithm with the modified Apriori algorithm by using

this real dataset.

39

Table 3. Experiment results of a throwing-ball dataset

Total number of closed patterns 7,471
Average length of closed spatterns 15.47
Maximum length of closed spatterns 27
Average length of closed vpatterns 2.97
Maximum length of closed vpatterns 3
Total runtime 16214.1 sec.

Figure 23. A cl@s_ed pattern mined

In Table 3, there are 7471 _closé:d patterns: mined. That means the CVP
algorithm can mine the posture of throwing—balls.in this experiment. Figure 23 shows
one of the closed patterns mined. The mined closed pattern shows the movement of
the object in the video and we can distinguish this kind of throwing-balls pattern from

other movements.

The experimental results shows that the CVP algorithm is more scalable and
efficient than the modified Apriori algorithm since it can localize the support counting,

pattern joining and candidate pruning in the projected database.

40

Chapter 5 Conclusions and Futurework

In this thesis, we proposed a novel algorithm, called CVP (Closed Video
Pattern), to mine closed patterns in a video database. Our proposed algorithm consists
of two phases. We first grow frequent video patterns in the spatial dimension and then
grow them in the temporal dimension. By exploiting the CV-tree and rplists to store
the information of frequent video patterns, the CVP algorithm can localize the
candidate generation, pattern join, and support counting in a small amount of rplists.
During the process of pattern generation, we develop several pruning strategies to
prune unnecessary or non-closed candidate patterns. Therefore, it can efficiently mine
frequent closed patterns in a video database.. The experimental results show the CVP

algorithm is efficient and scalable, and outpefforms the modified Apriori algorithm.

In the experiment conducted on the real dataset, the CVP algorithm is used to
mine the patterns of throwing a ball. Besides that, the CVP algorithm can be used to
find some interesting patterns in other applications, such as, action patterns, walking

patterns, running patterns, swimming _patterns, falling-down pattern, or

getting-drowned patterns, etc.

However, the CVP algorithm is a memory-based algorithm. It would face the
problem of out of the memory when the dataset is getting larger and larger. Therefore,
how to develop a disk-based algorithm or an integrated algorithm of getting the
balance of memory and disk is worth further study in the future. Moreover, the CVP
algorithm generates a large number of candidate patterns during the mining process
when the object is big or the number of frames is large. Thus, it is worth developing a

modified CVP algorithm to promote the mining efficiency in the future.

41

[1]

[2]

[3]

[4]

[3]

[6]

[7]

[8]

References

R. Agrawal and R. Srikant, Mining sequential patterns, in Proceedings of the
Eleventh International Conference on Data Engineering, Taipei, Taiwan, 1995,
pp. 3-14.

J, Ayres, J. E. Gehrke, T. Yiu, and J. Flannick, Sequential pattern mining using a
bitmap representation, in Proceedings of ACM SIGMOD International
Conference on Knowledge Discovery in Database, Edmonton, Canada, 2002, pp.
429-435.

J. Cheng, Y. Ke, and W. Ng, o-Tolerance Closed Frequent Itemsets, Proceedings
of the IEEE International Conference on Data Mining, Hong Kong, China, 2006,
pp. 139-148. \ =

J. Han, J. Pei, B. Mortazavi-As_!, Q. C}lqn, xU. Dayal, and M. C. Hsu, Mining
frequent patterns without céﬁ%@%@é generation, in Proceedings of
ACM-SIGMOD Internatienal C(l)ﬁhfergnce on Management of Data Mining, 2000,
pp. 1-12. { A

J. Han, J. Pei, B. Mortazavi-Aél, Q. Cheﬁ, U. Dayal, and M. C. Hsu, FreeSpan:
frequent pattern-projected sequential pattern mining, in Proceedings of
International Conference on Knowledge Discovery and Data Mining, 2000,
pp-355-359.

J. Huan, W. Wang, and J. Prins, Efficient mining of frequent subgraphs in the
presence of isomorphism, in Proceedings of IEEE International Conference on
Data mining, 2003, pp. 549-552.

A. Inokuchi, T. Washio, and H.Motoda, An Apriori-based algorithm for
miningfrequent substructures from graph data, in Proceedings of European
Conference on Principles and Practice of Knowledge in Databases, 2000, pp.
13-23.

R. Jin, C. Wang, D. Polshakov, S. Parthasarathy, G. Agarwal, Discovery frequent

42

topological structures from graph datasets, in Proceeding of the Eleventh ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
2005, pp. 606-611.

[9] M. Kuramochi and G. Karypis, Frequent subgraph discovery, in Proceedings of
IEEE International Conference on Data Mining, 2001, pp. 313-320.

[10] M. Leleu, C. Rigotti, Jean-Francois Boulicaut, and G. Euvrard, GO-SPADE:
mining sequential patterns over datasets with consecutive repetitions, in
Proceedings of International Conference on Machine Learning and Data Mining,
2001, pp. 293-306.

[11] C. Lucchese, S. Orlando, and R. Perego, Fast and memory efficient mining of
frequent closed itemsets, IEEE Transactions on Knowledge and Data
Engineering, Vol. 18, No. 1, 2006, pp. 21-36.

[12] N. Pasquier, Y. Bastide, R. Taouil; and L Lakhal, Discovering frequent closed
itemsets for association rules, Pro?ggding_s’ of the 7th International Conference on
Database Theory, Jerusalém,Israel, 1;?’99, pp- 398-416.

[13] J. Pei, J. Han, and R. Mao,’CLOSET'::::an eHfigient algorithm for mining frequent
closed itemsets, Proceedings of the 5th ACM-=SIGMOD Workshop on Research
Issues in Data Mining and Knowledge Discovery, Dallas, USA, 2000, pp. 11-20.

[14] J. Pei, J. Han, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M. C. Hsu, PrefixSpan:
mining sequential patterns efficiently by prefix-projected pattern growth, in
Proceedings of IEEE International Conference on Data Engineering, 2001, pp.
215-224.

[15] N.G. Singh, S. R. Singh, and A.K. Mahanta, CloseMiner: discovering frequent
closed itemsets using frequent closed tidsets, Proceedings of IEEE International
Conference on Data Mining, Houston, USA, 2005, pp. 633-636.

[16] R. Srikant and R. Agrawal, Mining sequential patterns: generalizations and
performance improvements, in Proceedings of the 5th International Conference
on Extending Database Technology: Advances in Database Technology, 1996, pp.

3-17.
43

[17] T. Uno, T. Asai, Y. Uchida, and H. Arimura, An efficient algorithm for
enumerating closed patterns in transaction databases, Proceedings of the 7th
International Conference on Discovery Science, Padova, Italy, 2004, pp. 16-31.

[18] J. Wang, J. Han, and J. Pei, CLOSET+: searching for the best strategies for
mining frequent closed itemsets, Proceedings of the International Conference on
Knowledge Discovery and Data Mining, Washington, D.C., USA, 2003, pp.
236-245.

[19] X. Yan and J. Han, gSpan: graph-based substructure pattern mining, in
Proceedings of International Conference on Data Mining, 2002, pp. 721-724

[20] M. J. Zaki, SPADE: an efficient algorithm for mining frequent sequences,
Machine Learning, Vol. 42, No. 1, 2001, pp. 31-6.

[21] M. J. Zaki, and C. Hsiao, Efficient algorithms for mining closed itemsets and
their lattice structure, IEEE Transactions. on:Knowledge and Data Engineering,

Vol. 17, No. 4, 2005, pp. 462-4

=W

44

