Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 財務金融學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95843
Title: 再探金融指數已實現波動度預測
Revisiting the Prediction of Realized Volatility of Financial Indices
Authors: 方德霖
Te-Lin Fang
Advisor: 莊文議
Wen-I Chuang
Co-Advisor: 王之彥
Jr-Yan Wang
Keyword: 波動度預測,日內波動度,HAR模型,
Volatility prediction,intraday volatility,HAR model,
Publication Year : 2024
Degree: 碩士
Abstract: 波動度預測在金融領域是重要的研究方向之一,過去有許多學者提出不同的模型來提高預測的準確性。Corsi (2009)提出異質自我回歸(Heterogeneous Autoregressive, HAR)模型,使用過去一天、一周、一個月(1、5、22交易日)的已實現日內波動度來預測未來波動度,僅使用十分簡單的結構就擊敗其他更複雜且具長期記憶型的計量模型。而本研究以HAR模型為基礎,採用能夠捕捉更多日內價格變動且受市場結構雜訊影響較小的日內波動度計算方法,試圖提高預測精確度。同時,探討原始HAR模型的參數設定在具有不同交易性質的商品上是否合理,並通過擴展參數來尋找最佳的參數組合。實證結果顯示,在特定情況下,HAR模型的設定確實具有優異表現。然而,隨著商品交易性質和投資人行為的不同,參數選擇的傾向也會有所不同,並且發現某些特定參數在跨商品上能達到一致的優良結果。
Volatility prediction is a crucial research direction in the financial field, with many scholars having proposed various models to enhance prediction accuracy. Corsi (2009) introduced the heterogeneous autoregressive (HAR) model, which uses realized volatility over the past day, week, and month (1, 5, and 22 trading days) to forecast future volatility. Despite of its simple structure, the HAR model outperformed other more complex econometric models with long-term memory.
This study builds on the HAR model, employing an intraday volatility calculation method that captures more intraday price movements and is less affected by market structural noise, aiming to improve prediction accuracy. Additionally, it explores whether the parameter settings of the original HAR model are reasonable for commodities with different trading characteristics and extends the parameters to find the optimal combination. Empirical results indicate that, in specific scenarios, the HAR model settings indeed exhibit excellent performance. However, with varying trading characteristics of commodities and investor behavior, the preference for parameter selection also differs. Furthermore, it is found that certain parameters achieve consistently excellent results across different commodities.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95843
DOI: 10.6342/NTU202402226
Fulltext Rights: 未授權
Appears in Collections:財務金融學系

Files in This Item:
File SizeFormat 
ntu-112-2.pdf
  Restricted Access
1.15 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved