請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95843完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 莊文議 | zh_TW |
| dc.contributor.advisor | Wen-I Chuang | en |
| dc.contributor.author | 方德霖 | zh_TW |
| dc.contributor.author | Te-Lin Fang | en |
| dc.date.accessioned | 2024-09-18T16:19:35Z | - |
| dc.date.available | 2024-09-19 | - |
| dc.date.copyright | 2024-09-18 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-07 | - |
| dc.identifier.citation | Ait-Sahalia, Y., Mykland, P. A., & Zhang, L. (2005). How often to sample a continuous-time process in the presence of market microstructure noise. The Review of Financial Studies, 18(2), 351-416.
Alizadeh, Sassan, Michael W. Brandt, and Francis X. Diebold. "Range‐based estimation of stochastic volatility models." The Journal of Finance 57.3 (2002): 1047-1091. Andersen, T. G., & Bollerslev, T. (1998). Answering the skeptics: Yes, standard volatility models do provide accurate forecasts. International Economic Review, 39(4), 885-905. Andersen, T. G., Bollerslev, T., Diebold, F. X., & Ebens, H. (2001). The distribution of realized stock return volatility. Journal of Financial Economics, 61(1), 43-76. Andersen, T. G., Bollerslev, T., Diebold, F. X., & Labys, P. (2003). Modeling and forecasting realized volatility. Econometrica, 71(2), 579-625. Andersen, T. G., Bollerslev, T., & Diebold, F. X. (2007). Roughing it up: Including jump components in the measurement, modeling, and forecasting of return volatility. The Review of Economics and Statistics, 89(4), 701-720. Bandi, F. M., & Russell, J. R. (2006). Separating microstructure noise from volatility. Journal of Financial Economics, 79(3), 655-692. Bandi, F. M., & Russell, J. R. (2008). Microstructure noise, realized variance, and optimal sampling. The Review of Economic Studies, 75(2), 339-369. Barndorff-Nielsen, O. E., & Shephard, N. (2002a). Econometric analysis of realized volatility and its use in estimating stochastic volatility models. Journal of the Royal Statistical Society Series B: Statistical Methodology, 64(2), 253-280. Barndorff-Nielsen, O. E., & Shephard, N. (2002b). Estimating quadratic variation using realized variance. Journal of Applied Econometrics, 17(5), 457-477. Bollerslev, T. (1986). Generalized autoregressive conditional heteroscedasticity. Journal of Econometrics, 31(3), 307-327. Bollerslev, T., Li, S. Z., & Zhao, B. (2020). Good volatility, bad volatility, and the cross section of stock returns. Journal of Financial and Quantitative Analysis, 55(3), 751-781. Bollerslev, T., Patton, A. J., & Quaedvlieg, R. (2016). Exploiting the errors: A simple approach for improved volatility forecasting. Journal of Econometrics, 192(1), 1-18. Brownlees, C. T., & Gallo, G. M. (2010). Comparison of volatility measures: a risk management perspective. Journal of Financial Econometrics, 8(1), 29-56. Christensen, K., & Podolskij, M. (2005). Asymptotic theory for range-based estimation of integrated variance of a continuous semi-martingale (No. 2005, 18). Technical report. Christensen, K., & Podolskij, M. (2006). Range-based estimation of quadratic variation (No. 2006, 37). Technical report. Christensen, K., & Podolskij, M. (2007). Realized range-based estimation of integrated variance. Journal of Econometrics, 141(2), 323-349. Clements, A., & Preve, D. P. (2021). A practical guide to harnessing the har volatility model. Journal of Banking & Finance, 133, 106285. Corsi, F. (2009). A simple approximate long-memory model of realized volatility. Journal of Financial Econometrics, 7(2), 174-196. Corsi, F., Pirino, D., & Reno, R. (2010). Threshold bipower variation and the impact of jumps on volatility forecasting. Journal of Econometrics, 159(2), 276-288. DellaVigna, S., & Pollet, J. M. (2009). Investor inattention and Friday earnings announcements. The journal of finance, 64(2), 709-749. Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica: Journal of the Econometric Society, 50(4), 987-1007. Hansen, P. R., & Lunde, A. (2006). Realized variance and market microstructure noise. Journal of Business & Economic Statistics, 24(2), 127-161. Hansen, P. R., Lunde, A., & Nason, J. M. (2011). The model confidence set. Econometrica, 79(2), 453-497. Liu, J., Wei, Y., Ma, F., & Wahab, M. I. M. (2017). Forecasting the realized range-based volatility using dynamic model averaging approach. Economic Modelling, 61, 12-26. Liu, L. Y., Patton, A. J., & Sheppard, K. (2015). Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes. Journal of Econometrics, 187(1), 293-311. Louis, H., & Sun, A. (2010). Investor inattention and the market reaction to merger announcements. Management science, 56(10), 1781-1793. Ma, F., Zhang, Y., Huang, D., & Lai, X. (2018). Forecasting oil futures price volatility: New evidence from realized range-based volatility. Energy Economics, 75, 400-409. Martens, M., & Van Dijk, D. (2007). Measuring volatility with the realized range. Journal of Econometrics, 138(1), 181-207. Omura, A., Cheung, A., & Su, J. J. (2024). Does natural gas volatility affect Bitcoin volatility? Evidence from the HAR-RV model. Applied Economics, 56(4), 414-425. Parkinson, M. (1980). The extreme value method for estimating the variance of the rate of return. Journal of Business, 53(1), 61-65. Patton, A. J., & Sheppard, K. (2015). Good volatility, bad volatility: Signed jumps and the persistence of volatility. Review of Economics and Statistics, 97(3), 683-697. Tiwari, A. K., Abakah, E. J. A., Adewuyi, A. O., & Lee, C. C. (2022). Quantile risk spillovers between energy and agricultural commodity markets: Evidence from pre and during COVID-19 outbreak. Energy Economics, 113, 106235. Xu, W., Wang, J., Ma, F., & Lu, X. (2019). Forecast the realized range-based volatility: The role of investor sentiment and regime switching. Physica A: Statistical Mechanics and its Applications, 527, 121422. Xiao, J., Wen, F., Zhao, Y., & Wang, X. (2021). The role of US implied volatility index in forecasting Chinese stock market volatility: Evidence from HAR models. International Review of Economics & Finance, 74, 311-333. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95843 | - |
| dc.description.abstract | 波動度預測在金融領域是重要的研究方向之一,過去有許多學者提出不同的模型來提高預測的準確性。Corsi (2009)提出異質自我回歸(Heterogeneous Autoregressive, HAR)模型,使用過去一天、一周、一個月(1、5、22交易日)的已實現日內波動度來預測未來波動度,僅使用十分簡單的結構就擊敗其他更複雜且具長期記憶型的計量模型。而本研究以HAR模型為基礎,採用能夠捕捉更多日內價格變動且受市場結構雜訊影響較小的日內波動度計算方法,試圖提高預測精確度。同時,探討原始HAR模型的參數設定在具有不同交易性質的商品上是否合理,並通過擴展參數來尋找最佳的參數組合。實證結果顯示,在特定情況下,HAR模型的設定確實具有優異表現。然而,隨著商品交易性質和投資人行為的不同,參數選擇的傾向也會有所不同,並且發現某些特定參數在跨商品上能達到一致的優良結果。 | zh_TW |
| dc.description.abstract | Volatility prediction is a crucial research direction in the financial field, with many scholars having proposed various models to enhance prediction accuracy. Corsi (2009) introduced the heterogeneous autoregressive (HAR) model, which uses realized volatility over the past day, week, and month (1, 5, and 22 trading days) to forecast future volatility. Despite of its simple structure, the HAR model outperformed other more complex econometric models with long-term memory.
This study builds on the HAR model, employing an intraday volatility calculation method that captures more intraday price movements and is less affected by market structural noise, aiming to improve prediction accuracy. Additionally, it explores whether the parameter settings of the original HAR model are reasonable for commodities with different trading characteristics and extends the parameters to find the optimal combination. Empirical results indicate that, in specific scenarios, the HAR model settings indeed exhibit excellent performance. However, with varying trading characteristics of commodities and investor behavior, the preference for parameter selection also differs. Furthermore, it is found that certain parameters achieve consistently excellent results across different commodities. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-18T16:19:35Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-18T16:19:35Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 i
ABSTRACT ii 表次 v 圖次 vi 1 第一章 前言 1 1.1 研究背景與動機 1 1.2 研究目的 2 2 第二章 文獻回顧 3 3 第三章 研究方法 6 3.1 HAR模型 6 3.2 模型改良 6 3.2.1 RRV 7 3.2.2 參數擴展 8 3.2.3 WLS 9 3.3 模型比較 10 3.3.1 理論建構 10 3.3.2 演算法 11 3.3.3 p-value 11 3.3.4 Equivalence Test和Elimination Rule 12 4 第四章 實證研究與結果 15 4.1 資料選取及來源 15 4.2 實證分析及結果 17 4.3 SPX 23 4.3.1 預測未來各天期SPX波動度之平均表現 23 4.3.2 預測未來1天SPX波動度之表現 24 4.3.3 預測未來5天SPX波動度之表現 25 4.3.4 預測未來10天SPX波動度之表現 26 4.3.5 預測未來22天SPX波動度之表現 27 4.3.6 SPX小結 28 4.4 EURUSD 29 4.4.1 預測未來各天期EURUSD波動度之平均表現 29 4.4.2 預測未來1天EURUSD波動度之表現 30 4.4.3 預測未來5天EURUSD波動度之表現 30 4.4.4 預測未來10天EURUSD波動度之表現 33 4.4.5 預測未來22天EURUSD波動度之表現 34 4.4.6 EURUSD小結 34 4.5 Bitcoin 35 4.5.1 預測未來各天期Bitcoin波動度之平均表現 35 4.5.2 預測未來1天Bitcoin波動度之表現 36 4.5.3 預測未來5天Bitcoin波動度之表現 37 4.5.4 預測未來10天Bitcoin波動度之表現 38 4.5.5 預測未來22天Bitcoin波動度之表現 38 4.5.6 Bitcoin小結 39 5 第五章 結論 40 參考文獻 42 | - |
| dc.language.iso | zh_TW | - |
| dc.title | 再探金融指數已實現波動度預測 | zh_TW |
| dc.title | Revisiting the Prediction of Realized Volatility of Financial Indices | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 王之彥 | zh_TW |
| dc.contributor.coadvisor | Jr-Yan Wang | en |
| dc.contributor.oralexamcommittee | 郭家豪;繆維中 | zh_TW |
| dc.contributor.oralexamcommittee | Jia-Hau Guo;Wei-Chung Miao | en |
| dc.subject.keyword | 波動度預測,日內波動度,HAR模型, | zh_TW |
| dc.subject.keyword | Volatility prediction,intraday volatility,HAR model, | en |
| dc.relation.page | 45 | - |
| dc.identifier.doi | 10.6342/NTU202402226 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-09 | - |
| dc.contributor.author-college | 管理學院 | - |
| dc.contributor.author-dept | 財務金融學系 | - |
| 顯示於系所單位: | 財務金融學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 1.15 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
