Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 共同教育中心
  3. 統計碩士學位學程
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95434
Title: 時間序列分析 : 應用經驗動態建模於股市交易
Time Series Analysis: Applying Empirical Dynamic Modeling to Stock Trading
Authors: 張伊琮
Yi-Tsung Chang
Advisor: 黃從仁
Tsung-Ren Huang
Keyword: 經驗動態建模,交易模型,機器學習,
Empirical Dynamic Modeling,Trading Model,Machine Learning,
Publication Year : 2024
Degree: 碩士
Abstract: 經驗動態建模(Empirical Dynamic Modeling,簡稱 EDM),該方法透過吸引子重建(attractor reconstruction)、狀態空間重建(state space reconstruction)等數據驅動的方法,在生態學中被廣泛應用並取得巨大的成功,但至今尚未被廣泛使用於其他領域尤其在金融領域上,而EDM應用在金融資料上是否也能有良好的預測效果著實令人好奇。故本研究首度嘗試將EDM應用於股市交易之中,除了利用EDM原先所擅長的數值預測對未來股價進行預測。還自MDR S-map延伸發展出一個新的分類預測器MDR S-map Classifier對股票的未來漲跌進行分類預測。實驗中我們透過收集到的台灣股市資料,比較了MDR S-map Classifier與其他常被使用的深度學習模型,在許多方面上EDM方法都優於深度學習模型,甚至在對未來的漲跌預測上,MDR S-map Classifier的獲利表現遠遠的好過於AE-MLP模型。最後,我們還對這個新方法進行了更深入的研究,發現了當某些特定的資料特性存在時,如交易標的尚未過熱以及自營商介入較少等,MDR S-map Classifier有機會取得較優秀的預測結果。
Empirical Dynamic Modeling (EDM) utilizes data-driven techniques such as attractor reconstruction and state space reconstruction. This method has been widely applied and highly successful in the field of ecology. However, it has not been broadly adopted in other fields, particularly in finance. The potential effectiveness of EDM in predicting financial data is an intriguing question. Therefore, this study represents the first attempt to apply EDM to stock market trading. In addition to using EDM's original numerical prediction capabilities to forecast future stock prices, we have developed a new classifier predictor, the MDR S-map Classifier, derived from the MDR S-map, to classify future stock price movements.

Through experiments with Taiwanese stock market data, we compared the MDR S-map Classifier with commonly used deep learning models. The EDM method outperformed deep learning models in several aspects, and the MDR S-map Classifier significantly outperformed the AE-MLP model in profitability for predicting future stock movements. Additionally, further investigation into this new method revealed that the MDR S-map Classifier could achieve superior prediction results under certain specific data characteristics.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95434
DOI: 10.6342/NTU202402639
Fulltext Rights: 同意授權(限校園內公開)
metadata.dc.date.embargo-lift: 2029-07-29
Appears in Collections:統計碩士學位學程

Files in This Item:
File SizeFormat 
ntu-112-2.pdf
  Restricted Access
3.6 MBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved