請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95434完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃從仁 | zh_TW |
| dc.contributor.advisor | Tsung-Ren Huang | en |
| dc.contributor.author | 張伊琮 | zh_TW |
| dc.contributor.author | Yi-Tsung Chang | en |
| dc.date.accessioned | 2024-09-06T16:32:07Z | - |
| dc.date.available | 2024-09-07 | - |
| dc.date.copyright | 2024-09-06 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-30 | - |
| dc.identifier.citation | Cenci, S., Sugihara, G. & Saavedra, S. (2019) Regularized S-map for inference and forecasting with noisy ecological time series. Methods in Ecology and Evolution, 10, 650–660.
Chang, C. W., Ushio, M., & Hsieh, C. H. (2017). Empirical dynamic modeling for beginners. Ecological research, 32, 785-796. Chang, C. W., Miki, T., Ushio, M., Ke, P. J., Lu, H. P., Shiah, F. K., & Hsieh, C. H. (2021). Reconstructing large interaction networks from empirical time series data. Ecology Letters, 24(12), 2763-2774. Deyle, E. R., & Sugihara, G. (2011). Generalized theorems for nonlinear state space reconstruction. Plos one, 6(3), e18295. Gudelek, M. U., Boluk, S. A., & Ozbayoglu, A. M. (2017, November). A deep learning based stock trading model with 2-D CNN trend detection. In 2017 IEEE symposium series on computational intelligence (SSCI) (pp. 1-8). IEEE. Lu, W., Li, J., Wang, J., & Qin, L. (2021). A CNN-BiLSTM-AM method for stock price prediction. Neural Computing and Applications, 33(10), 4741-4753. Ma, J., Yang, M., & Lin, Y. (2019). Ultra-short-term probabilistic wind turbine power forecast based on empirical dynamic modeling. IEEE Transactions on Sustainable Energy, 11(2), 906-915. May, R. M., Levin, S. A., & Sugihara, G. (2008). Ecology for bankers. Nature, 451(7181), 893-894. Milocco, L., & Uller, T. (2023). A data‐driven framework to model the organism–environment system. Evolution & Development, 25(6), 439-450. Munch, S. B., Rogers, T. L., & Sugihara, G. (2023). Recent developments in empirical dynamic modelling. Methods in Ecology and Evolution, 14(3), 732-745. Nelson, D. M., Pereira, A. C., & De Oliveira, R. A. (2017, May). Stock market's price movement prediction with LSTM neural networks. In 2017 International joint conference on neural networks (IJCNN) (pp. 1419-1426). Ieee. Nova, N., Deyle, E. R., Shocket, M. S., MacDonald, A. J., Childs, M. L., Rypdal, M., ... & Mordecai, E. A. (2021). Susceptible host availability modulates climate effects on dengue dynamics. Ecology letters, 24(3), 415-425. Sugihara, G., & May, R. M. (1990). Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature, 344(6268), 734-741. Sugihara, G. (1994). Nonlinear forecasting for the classification of natural time series. Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences, 348(1688), 477-495. Sugihara G, May R, Ye H, Hsieh CH, Deyle E, Fogarty M, Munch S (2012) Detecting causality in complex ecosystems. Science 338:496–500. Takens, F. (1981). Detecting strange attractors in turbulence. In D. A. Rand & L. S. Young (Eds.), Dynamical systems and turbulence (pp. 366–381). Springer. Ye, H., Deyle, E. R., Gilarranz, L. J., & Sugihara, G. (2015). Distinguishing time-delayed causal interactions using convergent cross mapping. Scientific reports, 5(1), 14750. Ye, H., Beamish, R. J., Glaser, S. M., Grant, S. C., Hsieh, C. H., Richards, L. J., ... & Sugihara, G. (2015). Equation-free mechanistic ecosystem forecasting using empirical dynamic modeling. Proceedings of the National Academy of Sciences, 112(13), E1569-E1576. Ye H, Sugihara G (2016) Information leverage in interconnected ecosystems: overcoming the curse of dimensionality. Science 353:922 Zhang, Z., Zohren, S., & Roberts, S. (2019). Deeplob: Deep convolutional neural networks for limit order books. IEEE Transactions on Signal Processing, 67(11), 3001-3012. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95434 | - |
| dc.description.abstract | 經驗動態建模(Empirical Dynamic Modeling,簡稱 EDM),該方法透過吸引子重建(attractor reconstruction)、狀態空間重建(state space reconstruction)等數據驅動的方法,在生態學中被廣泛應用並取得巨大的成功,但至今尚未被廣泛使用於其他領域尤其在金融領域上,而EDM應用在金融資料上是否也能有良好的預測效果著實令人好奇。故本研究首度嘗試將EDM應用於股市交易之中,除了利用EDM原先所擅長的數值預測對未來股價進行預測。還自MDR S-map延伸發展出一個新的分類預測器MDR S-map Classifier對股票的未來漲跌進行分類預測。實驗中我們透過收集到的台灣股市資料,比較了MDR S-map Classifier與其他常被使用的深度學習模型,在許多方面上EDM方法都優於深度學習模型,甚至在對未來的漲跌預測上,MDR S-map Classifier的獲利表現遠遠的好過於AE-MLP模型。最後,我們還對這個新方法進行了更深入的研究,發現了當某些特定的資料特性存在時,如交易標的尚未過熱以及自營商介入較少等,MDR S-map Classifier有機會取得較優秀的預測結果。 | zh_TW |
| dc.description.abstract | Empirical Dynamic Modeling (EDM) utilizes data-driven techniques such as attractor reconstruction and state space reconstruction. This method has been widely applied and highly successful in the field of ecology. However, it has not been broadly adopted in other fields, particularly in finance. The potential effectiveness of EDM in predicting financial data is an intriguing question. Therefore, this study represents the first attempt to apply EDM to stock market trading. In addition to using EDM's original numerical prediction capabilities to forecast future stock prices, we have developed a new classifier predictor, the MDR S-map Classifier, derived from the MDR S-map, to classify future stock price movements.
Through experiments with Taiwanese stock market data, we compared the MDR S-map Classifier with commonly used deep learning models. The EDM method outperformed deep learning models in several aspects, and the MDR S-map Classifier significantly outperformed the AE-MLP model in profitability for predicting future stock movements. Additionally, further investigation into this new method revealed that the MDR S-map Classifier could achieve superior prediction results under certain specific data characteristics. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-06T16:32:07Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-06T16:32:07Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 …………………………………………………………………… i
致謝 ………………………………………………………………………………………………… ii 摘要 ………………………………………………………………………………………………… iii Abstract ……………………………………………………………………………………… iv 目錄 ………………………………………………………………………………………………… v 圖目錄 …………………………………………………………………………………………… vii 表目錄 …………………………………………………………………………………………… ix 第一章 緒論 1.1 研究背景與動機 ……………………………………………………………… 1 1.2 文獻回顧 ……………………………………………………………………………… 2 1.3 研究架構 ……………………………………………………………………………… 3 第二章 研究方法 2.1 經驗動態建模 …………………………………………………………………… 4 2.2 多視野距離正則化S-map ……………………………………………… 7 2.3 多視野距離正則化S-map分類器 ……………………………… 9 第三章 實驗 3.1 資料集與資料前處理 ……………………………………………………… 12 3.2 股票價格預測 …………………………………………………………………… 17 3.3 股票漲跌預測 …………………………………………………………………… 26 3.4 多視野距離正則化S-map分類器泛用性實驗 ……… 35 第四章 討論 4.1 研究貢獻 …………………………………………………………………………… 42 4.2 限制 ……………………………………………………………………………………… 42 4.2 未來發展 …………………………………………………………………………… 43 參考文獻 ………………………………………………………………………………………… 45 附錄 ………………………………………………………………………………………………… 49 A.1 MLP模型架構 ……………………………………………………………………… 49 A.2 LSTM模型架構 …………………………………………………………………… 49 A.3 CNN模型架構 ……………………………………………………………………… 50 A.4 LSTM-AM模型架構 …………………………………………………………… 50 A.5 CNN-BiLSTM-AM模型架構 …………………………………………… 50 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 交易模型 | zh_TW |
| dc.subject | 經驗動態建模 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | Machine Learning | en |
| dc.subject | Empirical Dynamic Modeling | en |
| dc.subject | Trading Model | en |
| dc.title | 時間序列分析 : 應用經驗動態建模於股市交易 | zh_TW |
| dc.title | Time Series Analysis: Applying Empirical Dynamic Modeling to Stock Trading | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 許耀文;謝志豪 | zh_TW |
| dc.contributor.oralexamcommittee | Yaowen Hsu;Chih-Hao Hsieh | en |
| dc.subject.keyword | 經驗動態建模,交易模型,機器學習, | zh_TW |
| dc.subject.keyword | Empirical Dynamic Modeling,Trading Model,Machine Learning, | en |
| dc.relation.page | 50 | - |
| dc.identifier.doi | 10.6342/NTU202402639 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-01 | - |
| dc.contributor.author-college | 共同教育中心 | - |
| dc.contributor.author-dept | 統計碩士學位學程 | - |
| dc.date.embargo-lift | 2029-07-29 | - |
| 顯示於系所單位: | 統計碩士學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 3.6 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
