Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94565
Title: 以多任務基於注意力的方法預測工作轉換
MAP: A Multitask Attention-based Prediction Method for Job Mobility
Authors: 楊子寬
Tzu-Kuan Yang
Advisor: 魏志平
Chih-Ping Wei
Keyword: 工作轉換預測,注意力機制,多任務學習,異質圖,序列建模,深度學習,
Job Mobility Prediction,Attention Mechanism,Multitask Learning,Heterogeneous Graph,Sequential Modeling,Deep Learning,
Publication Year : 2024
Degree: 碩士
Abstract: 在就業市場中,有各式各樣的工作機會。一個人的下一份工作有許多選擇,同時可能涉及他曾經任職過的多間公司和不同職位,這使得個人工作轉換的預測變得更加複雜。同一家公司在不同時間點的定位可能會發生變化,同一職位在不同時間點的性質和所需技能也可能有所不同。在個人的工作經歷中,各個工作發生的時間點不同,工作之間的相關程度也有所不同,這使得用模型來捕捉這些特性變得更加困難。
為了解決這些問題,我們延伸了目前考量公司、職位在時間動態變化的最先進模型,使用注意力機制並引入多任務學習來增進模型的表現。透過注意力機制,可以權衡當前工作與過去工作的重要性;透過多任務學習,可以利用輔助任務,參考額外的相關資訊,進而更新模型共用的參數提升表現。
實驗結果顯示,我們的模型優於目前最先進的方法,且注意力機制、多任務的引進這兩項改動都分別對這項任務有所改善。
In the job market, there are various job opportunities available. An individual's next job can have many choices, potentially involving multiple companies and different positions they have previously held, making the prediction of job transitions more complex. The positioning of the same company may change at different points in time, and the nature and required skills of the same position may also vary over time. In an individual's work history, the timing of each job differs, and the degree of relevance between jobs also varies, making it more challenging to use models to capture these characteristics.
To address these issues, we extend the current state-of-the-art model that considers the dynamic changes of companies and positions over time by incorporating attention mechanisms and introducing multitask learning to enhance the model's performance. Through the attention mechanism, the importance of the current job and past jobs can be captured; through multitask learning, additional related information can be referenced using auxiliary tasks, thereby updating the shared parameters of the model to improve performance.
The experimental results demonstrate that our model outperforms the most advanced methods now in use, and the incorporation of the attention mechanism and multitask learning both separately contribute to the improvement of this task.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94565
DOI: 10.6342/NTU202404145
Fulltext Rights: 同意授權(全球公開)
Appears in Collections:資訊管理學系

Files in This Item:
File SizeFormat 
ntu-112-2.pdf1.42 MBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved