Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94565
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor魏志平zh_TW
dc.contributor.advisorChih-Ping Weien
dc.contributor.author楊子寬zh_TW
dc.contributor.authorTzu-Kuan Yangen
dc.date.accessioned2024-08-16T16:46:13Z-
dc.date.available2024-08-17-
dc.date.copyright2024-08-16-
dc.date.issued2024-
dc.date.submitted2024-08-13-
dc.identifier.citationBarros, C. D., Mendonça, M. R., Vieira, A. B., & Ziviani, A. (2021). A survey on embedding dynamic graphs. ACM Computing Surveys (CSUR), 55(1), 1-37.
Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078.
Ferreira, C. H. G., Ferreira, F. M., de Sousa Matos, B., & de Almeida, J. M. (2019). Modeling dynamic ideological behavior in political networks. The Journal of Web Science, 7.
Forbes. (2024). 4 Pivoting Tips To Successfully Change Careers In 2024. https://www.forbes.com/sites/cherylrobinson/2024/01/03/4-pivoting-tips-to-successfully-change-careers-in-2024/
Gallup. (2016). Millennials: The Job-Hopping Generation. https://www.gallup.com/workplace/231587/millennials-job-hopping-generation.aspx
Gallup. (2019). This Fixable Problem Costs U.S. Businesses $1 Trillion. https://www.gallup.com/workplace/247391/fixable-problem-costs-businesses-trillion.aspx
Gehring, J., Auli, M., Grangier, D., Yarats, D., & Dauphin, Y. N. (2017). Convolutional sequence to sequence learning. International Conference on Machine Learning (pp. 1243-1252).
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780.
Le, Q., & Mikolov, T. (2014). Distributed representations of sentences and documents. International Conference on Machine Learning (pp. 1188-1196).
Li, L., Jing, H., Tong, H., Yang, J., He, Q., & Chen, B.-C. (2017). NEMO: Next career move prediction with contextual embedding. Proceedings of the 26th International Conference on World Wide Web Companion (pp. 505-513)
Liu, J., & Gong, X. (2019). Attention mechanism enhanced LSTM with residual architecture and its application for protein-protein interaction residue pairs prediction. BMC bioinformatics, 20, 1-11.
Liu, J., Ng, Y. C., Wood, K. L., & Lim, K. H. (2020). IPOD: a large-scale industrial and professional occupation dataset. Companion Publication of the 2020 Conference on Computer Supported Cooperative Work and Social Computing (pp. 323-328).
Lo, Y. (2024). CAR-TFP: Company-aware RNN-based modeling for talent flow prediction. Unpublished Master Thesis, Department of Information Management, National Taiwan University, Taipei, Taiwan, ROC.
Meng, Q., Zhu, H., Xiao, K., Zhang, L., & Xiong, H. (2019). A hierarchical career-path-aware neural network for job mobility prediction. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 14-24)
Řehůřek, R., & Sojka, P. (2010). Software framework for topic modelling with large corpora.
Reimers, N., & Gurevych, I. (2019). Sentence-bert: Sentence embeddings using siamese bert-networks. arXiv preprint arXiv:1908.10084.
SHRM. (2017). Employers Invest Heavily When Hiring Foreign Talent. https://www.shrm.org/topics-tools/news/talent-acquisition/employers-invest-heavily-hiring-foreign-talent
Australian Bureau of Statistics (2024). Job mobility. https://www.abs.gov.au/statistics/labour/jobs/job-mobility/latest-release
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing Systems, 30.
Wang, P. (2023). What’s next after quitting? Predicting the next job using time-series embeddings. Unpublished Master Thesis, Department of Information Management, National Taiwan University, Taipei, Taiwan, ROC.
Yamashita, M., Li, Y., Tran, T., Zhang, Y., & Lee, D. (2022). Looking further into the future: Career pathway prediction. Web Search and Data Mining Computational Jobs Marketplace.
Zhang, L., Zhou, D., Zhu, H., Xu, T., Zha, R., Chen, E., & Xiong, H. (2021). Attentive heterogeneous graph embedding for job mobility prediction. Proceedings of the 27th ACM SIGKDD conference on Knowledge Discovery & Data Mining (pp. 2192-2201).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94565-
dc.description.abstract在就業市場中,有各式各樣的工作機會。一個人的下一份工作有許多選擇,同時可能涉及他曾經任職過的多間公司和不同職位,這使得個人工作轉換的預測變得更加複雜。同一家公司在不同時間點的定位可能會發生變化,同一職位在不同時間點的性質和所需技能也可能有所不同。在個人的工作經歷中,各個工作發生的時間點不同,工作之間的相關程度也有所不同,這使得用模型來捕捉這些特性變得更加困難。
為了解決這些問題,我們延伸了目前考量公司、職位在時間動態變化的最先進模型,使用注意力機制並引入多任務學習來增進模型的表現。透過注意力機制,可以權衡當前工作與過去工作的重要性;透過多任務學習,可以利用輔助任務,參考額外的相關資訊,進而更新模型共用的參數提升表現。
實驗結果顯示,我們的模型優於目前最先進的方法,且注意力機制、多任務的引進這兩項改動都分別對這項任務有所改善。
zh_TW
dc.description.abstractIn the job market, there are various job opportunities available. An individual's next job can have many choices, potentially involving multiple companies and different positions they have previously held, making the prediction of job transitions more complex. The positioning of the same company may change at different points in time, and the nature and required skills of the same position may also vary over time. In an individual's work history, the timing of each job differs, and the degree of relevance between jobs also varies, making it more challenging to use models to capture these characteristics.
To address these issues, we extend the current state-of-the-art model that considers the dynamic changes of companies and positions over time by incorporating attention mechanisms and introducing multitask learning to enhance the model's performance. Through the attention mechanism, the importance of the current job and past jobs can be captured; through multitask learning, additional related information can be referenced using auxiliary tasks, thereby updating the shared parameters of the model to improve performance.
The experimental results demonstrate that our model outperforms the most advanced methods now in use, and the incorporation of the attention mechanism and multitask learning both separately contribute to the improvement of this task.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T16:46:13Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-16T16:46:13Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝辭 i
摘要 ii
Abstract iii
Table of Contents v
List of Figures vii
List of Tables viii
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation 2
Chapter 2 Literature Review 6
2.1 Job Mobility Prediction 6
2.2 Previous Job Prediction Models 6
2.3 Research Gaps 11
2.3.1 Our Approach 12
2.4 Summary 12
Chapter 3 Design of Our Proposed MAP Method for Next Job Prediction 14
3.1 Problem Formulation 14
3.3 Internal Aggregator 16
3.4 External Aggregator 17
3.5 Representation Fusion 18
3.6 Time-series Integration 19
3.7 Next Job Prediction Module 20
3.7.1 Positional Encoding 21
3.7.2 Masked Attention 21
3.7.3 Add & Norm 22
3.7.4 Multitask Learning 22
Chapter 4 Empirical Evaluation 25
4.1 Dataset 25
4.1.2 Dataset for Main Tasks 25
4.1.3 Dataset for Auxiliary Tasks 26
4.2 The Split of the Dataset 33
4.3 Evaluation Metrics 34
4.4 Experimental Setup 35
4.4.1 Implementation Details 35
4.4.2 Benchmark 36
4.5 Evaluation Results 36
4.6 Additional Evaluation Experiments 36
4.6.1 Ablation Tests 37
4.6.2 Effect of Internal-type and External-type Embeddings 38
4.6.3 Effect of Industry Cluster Sizes 39
4.6.4 Loss Weights for Multitask 40
4.6.5 Temporal Smoothness 41
Chapter 5 Conclusion and Future Works 44
5.1 Conclusion 44
5.2 Future Works 45
References 47
Appendix 49
A Dataset for Main Tasks 49
B Dataset for Position Groups 50
-
dc.language.isoen-
dc.title以多任務基於注意力的方法預測工作轉換zh_TW
dc.titleMAP: A Multitask Attention-based Prediction Method for Job Mobilityen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee胡雅涵;楊錦生zh_TW
dc.contributor.oralexamcommitteeYa-Han Hu;Chin-Sheng Yangen
dc.subject.keyword工作轉換預測,注意力機制,多任務學習,異質圖,序列建模,深度學習,zh_TW
dc.subject.keywordJob Mobility Prediction,Attention Mechanism,Multitask Learning,Heterogeneous Graph,Sequential Modeling,Deep Learning,en
dc.relation.page51-
dc.identifier.doi10.6342/NTU202404145-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-14-
dc.contributor.author-college管理學院-
dc.contributor.author-dept資訊管理學系-
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf1.42 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved