Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94372
Title: 以骨頭長度修正增強三維人體骨架預測
Enhancing 3D Human Pose Estimation with Bone Length Adjustment
Authors: 許智翔
Chih-Hsiang Hsu
Advisor: 張智星
Jyh-Shing Roger Jang
Keyword: 人體骨架預測,二維至三維抬升,電腦視覺,骨頭長度修正,循環神經網路,
Human pose estimation,2D-to-3D lifting,Computer vision,Bone length adjustment,Recurrent neural network viii,
Publication Year : 2024
Degree: 碩士
Abstract: 現今在三維人體骨架預測的研究,主要集中於預測三維關節座標,而忽視了其他重要的物理限制,例如骨頭長度的一致性以及人體的對稱性。我們提出了骨頭長度的預測模型,模型使用循環神經網路的架構,捕捉全面的影片資訊,以達到準確的預測。為了使訓練更有效,我們合成了符合物理限制的骨頭長度資料,並提出了全新的資料增強方法。此外,我們提出了骨頭長度校正,在保持骨頭轉向的狀態下,把骨頭長度替換成我們的預測值。結果顯示,在經過骨頭長度校正後,現存的三維人體骨架預測模型都能有顯著的改善。我們更進一步使用預測出的骨頭長度,對人體骨架預測模型進行微調,也同樣能有很好的改善。我們的骨頭長度預測模型超越了過去的最佳結果,並且在Human3.6M資料集的多個評估方法上,校正與模型微調的方法都能有效地改善。
Current approaches to 3D human pose estimation primarily focus on regressing 3D joint locations, often neglecting critical physical constraints such as bone length consistency and body symmetry. This work introduces a recurrent neural network architecture designed to capture holistic information across entire video sequences, enabling accurate prediction of bone lengths. To enhance training effectiveness, we propose a novel augmentation strategy using synthetic bone lengths that adhere to physical constraints. Moreover, we present a bone length adjustment method that preserves bone orientations while substituting bone lengths with predicted values. Our results demonstrate that existing 3D human pose estimation models can be significantly enhanced through this adjustment process. Furthermore, we fine-tune human pose estimation models using inferred bone lengths, observing notable improvements. Our bone length prediction model surpasses the previous best results, and our adjustment and fine-tuning method enhance performance across several metrics on the Human3.6M dataset.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94372
DOI: 10.6342/NTU202402242
Fulltext Rights: 同意授權(全球公開)
Appears in Collections:資訊網路與多媒體研究所

Files in This Item:
File SizeFormat 
ntu-112-2.pdf3.2 MBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved