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摘要

現今在三維人體骨架預測的研究，主要集中於預測三維關節座標，而忽視了

其他重要的物理限制，例如骨頭長度的一致性以及人體的對稱性。我們提出了骨

頭長度的預測模型，模型使用循環神經網路的架構，捕捉全面的影片資訊，以達

到準確的預測。為了使訓練更有效，我們合成了符合物理限制的骨頭長度資料，

並提出了全新的資料增強方法。此外，我們提出了骨頭長度校正，在保持骨頭轉

向的狀態下，把骨頭長度替換成我們的預測值。結果顯示，在經過骨頭長度校正

後，現存的三維人體骨架預測模型都能有顯著的改善。我們更進一步使用預測出

的骨頭長度，對人體骨架預測模型進行微調，也同樣能有很好的改善。我們的骨

頭長度預測模型超越了過去的最佳結果，並且在 Human3.6M資料集的多個評估方

法上，校正與模型微調的方法都能有效地改善。

關鍵字：人體骨架預測、二維至三維抬升、電腦視覺、骨頭長度修正、循環神經

網路
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Abstract

Current approaches to 3D human pose estimation primarily focus on regressing 3D

joint locations, often neglecting critical physical constraints such as bone length consis-

tency and body symmetry. This work introduces a recurrent neural network architecture

designed to capture holistic information across entire video sequences, enabling accurate

prediction of bone lengths. To enhance training effectiveness, we propose a novel augmen-

tation strategy using synthetic bone lengths that adhere to physical constraints. Moreover,

we present a bone length adjustment method that preserves bone orientations while substi-

tuting bone lengths with predicted values. Our results demonstrate that existing 3D human

pose estimation models can be significantly enhanced through this adjustment process.

Furthermore, we fine-tune human pose estimation models using inferred bone lengths,

observing notable improvements. Our bone length prediction model surpasses the previ-

ous best results, and our adjustment and fine-tuning method enhance performance across

several metrics on the Human3.6M dataset.
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Chapter 1 Introduction

In this chapter, we provide a brief introduction to this thesis. Section 1.1 introduces

the human pose estimation and the 2D-to-3D task. Section 1.2 discusses the motivation

behind this thesis. Section 1.3 describes our research topic and key contributions. Finally,

Section 1.4 outlines the contents of the subsequent chapters.

1.1 3D Human Pose Estimation

3D human pose estimation aims to localize the 3D positions of human joints from

monocular images or videos, holding significant implications for applications such as

human-computer interaction, sports analysis, and medical diagnostics, due to its capac-

ity to capture human motion. Presently, two-stage approaches dominate in 3D human

pose estimation. These methods initially detect 2D keypoints from input images or videos

and subsequently lift these 2D keypoints into 3D space, which is known as the 2D-to-3D

lifting task.

The 2D-to-3D lifting task faces inherent challenges due to depth ambiguity: mul-

tiple 3D poses can project to the same 2D keypoints. A simple example is the flipping

ambiguity described by [18], where finite possible 3D poses arise by flipping each bone

forwards or backwards. This ambiguity intensifies when bone lengths are unknown or

1
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when 2D keypoints are inaccurate. Recognizing the importance of temporal information

in resolving depth ambiguity, recent studies have employed recurrent neural networks

(RNNs) [8, 12], temporal convolutions [2, 15], and transformer-based models [13, 24, 25]

to extract temporal features.

1.2 Motivation

Despite recent advancements, many existing methods overlook the natural structure

of human poses. Studies have shown that focusing solely on minimizing per-joint errors

independently neglects overall pose coherence. Addressing this issue, bone-based repre-

sentations have been proposed [20]. Chen et al. [2] introduced a method to decompose

human poses into bone lengths and directions, simplifying the pose estimation task. How-

ever, integrating physical constraints such as bone length consistency and body symmetry

remains a challenge, with significant bone length errors observed in existing works.

We evaluated bone lengths with several state-of-the-art lifting models and found that

they do not predict accurate and consistent bone lengths. Although Chen et al. [2] trained

a bone length prediction network in their model and achieved high accuracy in bone length

prediction, bone length consistency is still neglected. As shown in Figure 1.1, the right

forearm length changes over time.

1.3 Research Topic and Contribution

Inspired by previouswork [2], we propose RNN-basedmodels to predict bone lengths.

Our models leverage global information from all frames of a video, rather than short se-

2
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Figure 1.1: Evaluating the variation in right forearm length over time with Chen et al. [2]
on S9 Direction 1 in Human3.6M test set.

quences. To enhance training effectiveness, we introduce a novel training time augmen-

tation method using synthetic bone lengths generated by the statistical body shape model

called SMPL [14]. This augmentation ensures that predicted bone lengths respect sym-

metry constraints and adhere to natural human body proportions. Unlike the method in

[2] that randomly adjust bone lengths, potentially distorting body proportions, our method

prioritizes realistic and accurate predictions.

We propose a novel adjustment method to enhance current state-of-the-art 2D-to-

3D lifting models. This method preserves bone directions while replacing bone lengths,

ensuring that the adjusted poses maintain anatomical correctness and achieve more precise

joint positions. Finally, we fine-tune existing 2D-to-3D lifting models using bone length

information. This fine-tuning process further improves model performance and can be

applied to any 2D-to-3D lifting model, demonstrating its versatility and effectiveness.

The contributions of this work are fourfold:

3
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• We propose a new data augmentation with synthetic bone lengths to satisfy physical

constraints.

• We propose a novel bone length prediction model that effectively utilizes global

information.

• We introduce a bone length adjustment method that enhances existing 2D-to-3D

lifting models, ensuring realistic body shapes and accurate joint positions.

• We demonstrate the efficacy of fine-tuning existing models with predicted bone

lengths, thereby improving their performance in 3D human pose estimation tasks.

1.4 Chapter Overview

In this chapter, we provide a brief introduction to our work. In Chapter 2, we will

discuss related work. Chapter 3 elaborates on our proposed methods. The experimental

setup is introduced in Chapter 4, followed by a discussion of the experimental results in

Chapter 5. Finally, Chapter 6 concludes the findings and points out the limitations of this

thesis.

4
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Chapter 2 Related Work

In this chapter, we will introduce previous studies related to our work. We discuss

the related work on 3D human pose estimation in Section 2.1 and the related work on

Recurrent Neural Network (RNN) in Section 2.2.

2.1 3D Human Pose Estimation

We split this section into three parts: overview, 2D keypoint detection, and 2D-to-3D

lifting. In the overview, we introduce related work on solving 3D human pose estimation

(Section 2.1.1), covering 2D keypoint detection (Section 2.1.2) and the 2D-to-3D lifting

task (Section 2.1.3).

2.1.1 Overview

3D human pose estimation using deep learning methods can be categorized into two

main approaches: the end-to-end approach and the two-stage approach.

The end-to-end approach predicts 3D human poses directly fromRGB images. These

methods [10, 11, 22] heavily rely on parametric 3D human shape models, such as SMPL

[14]. They estimate parameterized pose, shape, and translation, which are then decoded

5
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via the SMPL model to obtain the human pose and shape.

In contrast, the two-stage approach first detects 2D positions of joints in an image,

known as 2D keypoints. Techniques such as convolutional neural networks (CNNs) gen-

erate heatmaps that indicate the probability of joint locations [3, 19]. In the second stage,

these 2D keypoints are used to estimate the 3D pose of the human figure, which is called

2D-to-3D lifting task. Currently, the two-stage approach tends to be more accurate than

the end-to-end approach. End-to-end methods struggle with a lack of diversity in video

data, especially variations in background, due to the complex requirements of 3D pose

datasets, such as motion capture systems and high-speed cameras. This issue is mitigated

in the two-stage approach since 2D keypoints can be manually labeled, and modern 2D

keypoint detectors achieve high precision.

2.1.2 2D Keypoint Detection

There are two common approaches for 2D keypoint detection: the top-down approach

and the bottom-up approach. The top-down approach first localizes the bounding box of a

single subject and then detects keypoints within the bounding box [3, 19]. In contrast, the

bottom-up approach directly detects all keypoints in the image, which may contain mul-

tiple subjects [6]. While the top-down approach has higher time complexity, it generally

achieves superior performance compared to the bottom-up approach.

Since a human joint, like the wrist, cannot be accurately represented by a single pixel

in an image, detected keypoints only approximate the positions of joints. Recent works

address this by predicting heatmaps that represent the probability distributions of joints in

an image. The pixel points with the highest probability are considered the positions of the

6
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keypoints.

2.1.3 2D-to-3D Lifting

The 2D-to-3D lifting task is an ill-posed problem that involves predicting the addi-

tional depth dimension. Models that address this task are known as lifting models. Recent

works have utilized temporal information by predicting the human pose of the central

frame from a sequence of 2D keypoints in a video. The context information provides

clues about the movement of the target, making the predicted poses more robust to noise.

Hossain and Little [8] designed a sequence-to-sequence model based on Long Short-Term

Memory (LSTM) to obtain temporally consistent 3D poses. Pavllo et al. [15] proposed a

model based on dilated temporal convolution to capture long-term information and reduce

computational overhead compared to LSTMmodels. Chen et al. [2] demonstrated that di-

viding the task into bone length and bone direction prediction yields better results. Zheng

et al. [25] used transformer-based models to encode both spatial and temporal informa-

tion. Li et al. [13] further applied transformer-based models to generate multiple plausible

pose hypotheses and aggregate hypothesis features to estimate human poses. After the de-

noising diffusion models have emerged, a probalistic method based on diffusion models

is applied to human pose estimation, i.e. refining predicted poses [7] or generating several

hypotheses [16, 17, 23].

However, several challenges in the 2D-to-3D lifting task, such as self-occlusion and

the accuracy of bone lengths, remain inadequately addressed. In the following sections,

we will elaborate on these difficulties and the corresponding solutions.

7
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(a) (b)

Figure 2.1: Illustration of self-occlusion. (b) the model predicted keypoint of the wrist is
labeled by a red point and the correct keypoint position is labeled by a green point.

Self-occlusion. As shown in Figure 2.1, the left hand is occluded by his torso, leading to

inaccurate keypoint detection. Although the self-occlusion is unpreventable by the limited

view from a single camera, the same joint is not always occluded in a video, enabling

mitigating the noise by inferring with a sequence of keypoints that is sufficiently long.

Chen et al. [2] addresses this issue by incorporating the 2D keypoint visibility score,

evaluated using the predicted heatmaps from keypoint detection models. The visibility

score indicates the confidence level for each keypoint’s visibility. When a joint is difficult

to locate, such as when it is occluded or blurred, the visibility score is lower, suggesting

that the predicted keypoint is more likely to be inaccurate. This score provides crucial

information for lifting models to assess the reliability of keypoints, thereby enhancing

robustness. Additionally, the visibility score can reveal relative depth. For instance, in

Figure 2.1, the left wrist keypoint is occluded by the torso. Estimating the depth of the

left wrist relative to the chest is challenging when pictorial information is lost. If the left

wrist has a lower visibility score compared to the chest, it indicates that the wrist is likely

behind the body
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Figure 2.2: The inference result of [2] on a self-occluded video. Left: the target frame.
Middle: groundtruth 3D pose. Right: predicted 3D pose.

Figure 2.3: The framework of Anatomy3D [2], illustrating the bone direction prediction
network and the bone length prediction network.

However, the visibility score does not always accurately reflect visibility confidence.

Figure 2.2 shows a failed case where the visibility of the left wrist is the highest among all

keypoints, resulting in an incorrect prediction of the left wrist being in front of the body.

Anatomy3D. Chen et al. [2] proposed an anatomy-aware approach called Anatomy3D,

which simplifies the 2D-to-3D lifting task by dividing it into bone length prediction and

bone direction prediction, as illustrated in Figure 2.3. The bone direction prediction net-

work uses consecutive local frames as input as most lifting models do. The bone length

network leverages the global information by randomly sampling frames across the entire

video

9
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Figure 2.4: The illustration of the Recurrent Neural Network (RNN) with an unfolded
workflow. xt: the input. M : the RNN model. ht: the hidden state.

To address the limited diversity in bone lengths in the Human3.6M dataset’s training

set, which contains only five subjects, they introduced a training-time augmentation for the

bone length prediction task. During this augmentation process, a new set of bone lengths

is randomly generated and used to replace the bone lengths of the given ground truth 3D

poses, while preserving the bone directions. Additionally, the trajectory of a sequence of

3D poses is randomly shifted. Finally, the augmented 3D poses are projected onto the

camera plane, resulting in the input 2D keypoints.

2.2 Recurrent Neural Network (RNN)

The Recurrent Neural Network (RNN) is designed for processing sequential data.

Unlike traditional neural networks, an RNN has connections that form directed cycles,

allowing information to persist. This makes the RNN suitable for tasks where context

from previous inputs is crucial, such as time series prediction, language modeling, and

speech recognition.

In an RNN, a hidden state is maintained to capture temporal information from previ-

ous inputs. At step t, an RNN takes an input xt together with the last hidden state ht−1 to

evaluate a new hidden state ht. This hidden state ht is then passed to the next step. The
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update process can be written as:

ht = Wh · xt + Uh · ht−1 + bh

whereWh, Uh, and bh are learnable parameters.

Next, we will introduce the variations of RNN models: bi-directional RNN (Bi-

RNN), long short-term memory (LSTM), and gated recurrent unit (GRU).

2.2.1 Bi-directional RNN (Bi-RNN)

While the RNN is designed to capture information from previous inputs, the Bi-

directional RNN (Bi-RNN) adds another layer to process inputs in reverse order, known as

the backward RNN. The outputs from the forward and backward RNNs capture both past

and future information, which can be particularly helpful for tasks like language modeling

where the context to the right of the target word is important.

2.2.2 Long Short-Term Memory (LSTM)

RNNs often struggle to maintain long-range dependencies and suffer from the van-

ishing gradient problem. LSTM networks address these issues by introducing an addi-

tional cell state and three gates: the input gate, the forget gate, and the output gate. These

gates regulate the flow of information that should be passed to the next step, effectively

maintaining important long-range dependencies and mitigating gradient vanishing.

11
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2.2.3 Gated Recurrent Unit (GRU)

Gated Recurrent Units (GRUs) [5] simplify the LSTM by combining the input gate

and the forget gate, reducing computational complexity. Although GRUs simplify the

model structure, there is no definitive conclusion that either the LSTM or the GRU per-

forms better overall; their effectiveness can vary depending on the specific task and dataset.
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Chapter 3 Methods

In our work, we aim to predict bone lengths that are accurate, consistent, and reason-

able in body proportions. Our work consists of four main components: data augmentation,

bone length prediction, bone length adjustment, and fine-tuning. Section 3.1 details our

bone length augmentation method, Section 3.2 discusses our model design for predict-

ing bone lengths, Section 3.3 explains how we apply our bone length prediction model to

enhance 2D-to-3D lifting models, and Section 3.4 describes our fine-tuning methods.

3.1 Bone Length Augmentation

In this section, we detail the bone length augmentation method in three parts. We

first elaborate the data augmentation process (Section 3.1.1. Then we introduce the aug-

mentation with random bone lengths (Section 3.1.2) and synthetic bone length (Section

3.1.3).

3.1.1 Augmentation Process

We represent a human pose P = [p0 · · ·pJ−1]
T ∈ RJ×3 with J 3D joint positions as

a tree structure, as shown in Figure 3.1 (a). The root joint is positioned on the pelvis and

labeled as joint 0. For each joint pi ∈ R3, its parent is defined as the joint closer to the

13
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(a) (b)

Figure 3.1: (a) The representation of a human pose with joint labels. (b) The overview of
bone length replacement, which involves decomposing the pose into bone directions and
bone lengths, and then substituting the original bone lengths with new ones.

root (e.g., joint 0 is the parent of joint 1). The pose can be decomposed into bone lengths

L = [l1 · · · lJ−1]
T ∈ R(J−1)×1 and bone directions D = [d1 · · ·dJ−1]

T ∈ R(J−1)×3 using

the following equations:

li = ∥pi − pparent(i)∥2, i = 1, . . . , J − 1

di =
pi − pparent(i)

li
, i = 1, . . . , J − 1

(3.1)

Here, vertices (joints) are labeled from 0 to J − 1 and the edges (bones) are labeled

from 1 to J − 1. Given L and D, the original pose P can be reconstructed.

In the augmentation process, we first decompose a pose P into bone lengths L and

bone directionsD. We then use new bone lengthsL′ =
[
l′1 · · · l′J−1

]T and the original bone
directions D to reconstruct a new pose P̃ = [p̃1 · · · p̃J−1]

T . The bone length replacement

process is illustrated in Figure 3.1 (b). A random shift s ∈ R3 is added to the poses to

enhance the augmentation. The final result is the augmented pose P ′ =
[
p′
1 · · ·p′

J−1

]T .
14
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Figure 3.2: This error bar plot shows themeans and the standard deviations of bone lengths
in the Human3.6M dataset. Each mean value is represented by a dot, and the associated
standard deviation is shown by the bars, indicating the variability around the mean bone
lengths.

s ∼ N (µ = 0, σ = 0.5)

p′
i = p̃i + s, i = 1, . . . , J − 1

(3.2)

For a sequence of poses, the same random shift should be applied to preserve smooth-

ness in the trajectory. Since we use 2D keypoints as themodel input, we project the poseP ′

onto the 2D camera plane considering the camera intrinsic matrix (focal length and prin-

cipal point), and both radial and tangential nonlinear lens distortion. Our model learns

to predict L′ from the projected 2D keypoints. The key to the augmentation process is

generating reasonable bone lengths L′.

3.1.2 Random Bone Lengths

Before introducing our augmentation method, we briefly discuss the approach used

in [2]. They randomly adjust bone lengths L based on the average bone lengths L̄ =
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[
l̄′1 · · · l̄′J−1

]T ∈ R(J−1)×1 in the batch.

l′i = li + ril̄i, ri ∼ U(−0.3, 0.3), i = 1, . . . , J − 1

l′i = l′j, if they are the same body part on different side.
(3.3)

The proportion varies between −30% to 30%, which can lead to L′ deviating from

natural human anatomical structures. For example, this method could generate an unnatu-

rally long forearm combinedwith a short upper arm. Additionally,L′might lack symmetry

because each bone is adjusted independently by different random values. In our experi-

ments, we ensure symmetry by applying identical random adjustments to corresponding

bones on both sides of the body.

As shown in Figure 3.2, the variability of each bone length is different. For instance,

subjects in the Human3.6M dataset have similar lengths of forearms but differ in lengths

of upper arms. Intuitively, we may randomly adjust the bone lengths by applying a normal

distribution:

l′i ∼ N (li, σi), i = 1, . . . , J − 1

l′i = l′j, if they are the same body part on different side.
(3.4)

where the mean value is the i-th original length and σi denotes the standard deviation of

the i-th bone length in the Human3.6M dataset. We also maintain the symmetry in this

case.
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3.1.3 Synthetic Bone Lengths

SMPL [14] is a model that generates 3D human meshes from parameters. We use

SMPL to randomly generate human meshes and then evaluate the bone lengths from these

meshes. This ensures that the bone lengths are symmetric and reasonable, reflecting nat-

ural body shapes. To evaluate bone lengths from meshes, we apply the joint regression

matrix J introduced in [4] to mesh coordinatesM :

L̃ = JM (3.5)

The 3D poses in the Human3.6M dataset are recorded using a marker-based motion

capture system, where the position of each joint depends on the placement of the markers.

Consequently, a single joint regression matrix cannot accurately describe the positions of

the joints. When using a single joint regression matrix, the distribution of the regressed

bone lengths differs from that of the Human3.6M dataset, as shown in Figure 3.2, leading

to poor predictive ability. Tomitigate the difference in data distribution, we align the mean

value of the regressed bone lengths with the mean value in the Human3.6M dataset. After

the alignment, we obtain the augmented bone lengths L′.

3.2 Bone Length Model

The structures of our models are illustrated in Figure 3.3. Our primary model, de-

picted in Figure 3.3 (a), utilizes a single-layer bidirectional gated recurrent unit (Bi-GRU)

[5]. This Bi-GRU model processes the entire sequence of 2D keypoints from a given

video, leveraging both past and future information for improved prediction accuracy.
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(a) Bi-GRU model (b) GRU model

Figure 3.3: The structures of our bone length prediction models. The input length is 3 for
illustration.

However, due to its reliance on future data, the Bi-GRUmodel is not suitable for real-time

online processing. To address this limitation, we also developed a GRU model, shown in

Figure 3.3 (b), which updates bone lengths by processing the input keypoints frame by

frame, making it suitable for online applications. In this section, we specifically introduce

the Bi-GRU model.

During training, we slice the sequences of 2D keypoints into fixed-size segments

for convenience. The input sequence of 2D keypoints is denoted by X = [x0 · · ·xN ] ∈

RN×(J×2), where N is the sequence length, J is the number of joints, and xt ∈ R2J is the

flattened vector of 2D keypoints at frame t. A linear projection layer maps each xt to a

higher dimension c.

x′
t = Wpxt + bp. (3.6)

whereWp is the weight matrix and bp is the bias vector in the linear projection layer.

The projected vectors x′
t ∈ Rc are then input to the GRU. The forward process at

frame t can be written as

ht = GRU(X ′
t, ht−1) (3.7)
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Figure 3.4: The overview of bone length adjustment. The 3D pose estimation is based on
existing 2D-to-3D lifting models. The blue part is based on existing lifting models. Only
the parameters in blue part are fine-tuned.

whereht ∈ Rc′ is the hidden state at frame twith hidden size c′, and the initial hidden state

h0 is a zero vector. The backward process is similar but processes X ′
t in reverse order.

We concatenate the final hidden states from the forward process and backward processes

to obtain h ∈ R2c′ . The bone lengths L ∈ R(J−1)×1 are then regressed from h using the

weight matrixWR.

L = WRh (3.8)

Our goal is to minimize the difference between the predicted bone lengths L and the

groundtruth bone lengths L̂. The loss function is defined by the mean absolute error:

LL =
1

J − 1

J−1∑
i=1

∥li − l̂i∥1 (3.9)

3.3 Bone Length Adjustment

Figure 3.4 provides an overview of our bone length adjustment method. This tech-

nique is applied to the human poses predicted by existing 2D-to-3D lifting models. The

bone length adjustment involves replacing the bone lengths of the human poses with our

predicted bone lengths, as illustrated in Figure 3.1 (b).
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Given a sequence of 2D keypoints X and a lifting model, we first obtain predicted

poses P from the lifting model. The sequence X is segmented to fit in the input require-

ments of the lifting model. We then decompose the poses P into bone lengths L and bone

directions D. Concurrently, we use the entire sequence X to predict new bone lengths L′

with our model. By combining the bone directionsD from the lifting model and the bone

lengths L′ from our model, we generate the reconstructed poses P ′. This process refines

the poses, ensuring a more realistic body structure.

To evaluate the adjustment process, we use theMean Per Joint Position Error (MPJPE)

to measure the error between the reconstructed pose P ′ and the groundtruth pose P̂ :

LP =
1

J

J−1∑
i=0

∥p′
i − p̂i∥2 (3.10)

3.4 Fine-tuning

Fine-tuning the entire model (both the bone length model and the lifting model) is

very challenging. Therefore, we considered first fine-tune the lifting model while keeping

the parameters in the bone length model fixed. In this section, we introduce two fine-

tuning methods: fine-tuning solely on the lifting model (Section 3.4.1 and fine-tuning the

entire model (Section 3.4.2.

3.4.1 Fine-tuning on Lifting Model

we decided to fix the parameters of the length model for two main reasons. First,

bone directions are more challenging to learn compared to bone lengths, leading to er-
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roneous bone directions. For instance, as discussed in Section 2.1.3, the predicted bone

direction may point forward, when it should point backward. With these failed directions,

the model struggles to find suitable bone lengths that the reconstructed poses are close to

the groundtruth poses, thereby reducing learning efficiency in bone length prediction.

Second, the input keypoints differ between the lifting model and the bone length

model. In the two-stage estimation, 2D-to-3D lifting follows keypoint detection, so previ-

ous works use predicted keypoints as input. However, when applying data augmentation,

keypoints are obtained by projecting augmented poses, making them groundtruth key-

points. This discrepancy makes it unsuitable to fine-tune the lifting model and the bone

length model simultaneously.

In our adjustment process, bone lengths can also enhance the lifting models’ ability

to predict bone directions. We propose a fine-tuning method based on our adjustment

process. Since the lifting models are trained with predicted 2D keypoints, we can not

apply data augmentation that generates groundtruth keypoints. To prevent overfitting, the

bone length prediction model is fixed during this process. We fix the weights of our bone

length model and fine-tune the lifting models by minimizing the error in the predicted

bone directions and the MPJPE of the reconstructed pose P ′. The direction loss is defined

as:

LD =
1

J − 1

J−1∑
i=1

∥di − d̂i∥2 (3.11)

where di is the predicted direction and d̂i is the groundtruth direction of the i-th bone. The

total loss combines both the direction loss and the position error loss:
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Figure 3.5: The overview of the fine-tuning method on the entire model. The blue part is
based on existing lifting models.

L = LD + LP (3.12)

3.4.2 Fine-tuning on the Entire Model

To achieve a comprehensive evaluation of our bone length model, we fine-tune the

entire adjustment process, including the bone length prediction component. We incorpo-

rate data augmentation in the fine-tuning process, as illustrated in Figure 3.5.

Given a sequence of 2D keypoints X , we generate augmented keypoints X ′ and the

corresponding bone lengths L̂′. In the lifting model branch, we first predict the 3D pose

using the lifting model and then decompose it into bone directions D. The direction loss

is the same in 3.11.

In the bone length model branch, we predict the target bone lengths using the key-

points X , resulting L. For the augmented data, we predict L′ from the augmented key-

points X ′. To prevent overfitting, we only evaluate the bone length loss between L′ and

the augmented data L̂′:
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LLaug =
1

J − 1

J−1∑
i=1

∥l′i − l̂′i∥1 (3.13)

We reconstruct the final pose P ′ with the bone directions D and the bone lengths

L. The MPJPE loss is evaluated to fine-tune both the lifting model and the bone length

model. The total loss function is given by:

L = LD + LP + LLaug (3.14)
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Chapter 4 Experimental setup

In this chapter, we first discuss the dataset in Section 4.1 and the evaluation metrics

in Section 4.2. We then provide implementation details, including the environment in

Section 4.3 and parameter settings in Section 4.4. Section 4.5 outlines the experiments

conducted. The results of these experiments are discussed in Chapter 5.

4.1 Human3.6M Dataset

The Human3.6M dataset [1, 9] is the widely used Motion Capture (MoCap) dataset

in the field of human pose estimation. It contains 3.6 million frames featuring 11 actors

(5 females and 6 males) performing 15 diverse actions, such as walking, taking photos,

and sitting. The dataset includes high-resolution video recorded by four synchronized

cameras operating at 50 Hz, providing diverse perspectives for each action. Seven subjects

are annotated with 3D poses, captured using a high-speed MoCap system. Following the

standard protocol in prior works [2, 13, 15, 24, 25], we train our model on five subjects

(S1, S5, S6, S7, S8) and test on two subjects (S9, S11), using a 17-joint skeleton.
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Figure 4.1: Two poses with similar body shapes having identical keypoints

4.2 Evaluation Metrics

For bone length evaluation, we use the bone length error as described by Equation

3.9, comparing the predicted to the groundtruth lengths.

For human poses, we use two protocols: Protocol 1measures theMean Per Joint Posi-

tion Error (MPJPE), the average Euclidean distance between the predicted and groundtruth

joint positions, and Protocol 2 (P-MPJPE) reports the error after applying Procrustes anal-

ysis, which aligns the predicted poses with the groundtruth in terms of translating, rotating,

and uniform scaling.

Since the distance between the subject and the camera is unknown, poses after scaling

and translating can be projected to identical keypoints, as shown in Figure 4.1. Although

the two poses in the figure appear similar in body shape, theMPJPE between them is large.

By applying Procrustes analysis, the poses become aligned, enabling us to better evaluate

the accuracy of the predicted body structure.
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4.3 Environment

Our experiments are tested on two different devices. We trained all of the models

on TWCC. For the inference speed, we test on our local device. On both devices, we test

under a single GPU. The settings are as following:

• TWCC

– CPU: Intel(R) Xeon(R) Platinum 8280 CPU @ 2.70GHz

– RAM: 90 GB

– GPU: NVIDIA Tesla V100 SXM2

• Local device

– CPU: 12th Gen Intel(R) Core(TM) i5-12400 @ 2.50 GHz

– RAM: 32 GB

– GPU: NVIDIA GeForce RTX 3060 Ti

4.4 Parameter Settings

We discuss the parameter settings for bone length prediction in Section 4.4.1 and for

fine-tuning in Section 4.4.2.

4.4.1 Bone Length Prediction

We align the mean value of our synthetic bone lengths with the Human3.6M dataset.

Our study evaluates five different methods for generating bone lengths, detailed in Section
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3.1:

• RandomUniformDistribution: Randomly generated bone lengths from a uniform

distribution.

• Random Normal Distribution (Training Set Std): Bone lengths generated from

a normal distribution using standard deviations from the training set.

• Random Normal Distribution (Human3.6M Std): Bone lengths generated from

a normal distribution using standard deviations from both the training and test sets.

• Synthetic Aligned with Training Set: Synthetic bone lengths aligned with the

mean values in the training set.

• Synthetic Aligned with Human3.6M: Synthetic bone lengths aligned with the

mean values in both the training and test sets.

During training, we use a sequence length N = 512 and utilize the entire sequence

during testing. The projected dimension c is set to 256, and the hidden state dimension c′ is

set to 512. We train our models using the Adam optimizer with an exponentially decaying

learning rate schedule. The initial learning rate is set to 0.0001, and it decays by a factor

of 0.95 each epoch. The batch size is set to 256. We train our model with groundtruth 2D

keypoints which are projected from synthetic poses and test our model with 2D keypoints

predicted by the Cascaded Pyramid Network (CPN) [3].

4.4.2 Fine-tuning

For fine-tuning, we select Pavllo et al. [15] as our fine-tuning target. We configure

the sequence lengthN to 243, and apply horizontal flip augmentation during both training
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and testing, following their settings. We fine-tune the model using the Adam optimizer

and a batch-normalization momentum set to the final state 0.001. Similarly, we employ

an exponentially decaying learning rate schedule, starting at 0.00004 with a decay factor

of 0.95 per epoch. The batch size for fine-tuning is set to 1024, consistent with their work.

We utilize 2D keypoints predicted by CPN for both training and testing phases. Finally,

the horizontal flip augmentation is applied at train and test time, following previous works

[2, 15, 25].

4.5 Roadmap of Experiments

We conducted six experiments in this thesis:

• Bone Length Prediction

We compare the results on both the GRUmodel and the Bi-GRUmodel with random

and synthetic augmentations. We compare our best results to previous works.

• Bone Length Adjustment

We apply the adjustment to several existing lifting models using bone lengths pre-

dicted by our GRU model and Bi-GRU model. We compare the results before and

after the adjustment.

• Fine-tuning

We report two different settings: fine-tune the lifting model and fine-tune the entire

model. We compare the results before and after fine-tuning.

• Inference Speed

We test the inference speed in real-time processing and compare the results of our
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GRU model to previous works.

• Abaltion Study

We test our model with different settings and compare the results.
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Chapter 5 Results

In this chapter, we discuss the results for the bone length prediction model in Section

5.1, the bone length adjustment in Section 5.2, and the fine-tuning in Section 5.3. We

then present the inference speed of our bone length model and bone length adjustment in

Section 5.4. Finally, we conduct an ablation study and present the results in Section 5.5.

5.1 Bone Length Prediction Model

Figure 5.1 presents the outcomes of our Bi-GRU bone length model evaluation. Uti-

lizing synthetic bone lengths during training time augmentation yields the lowest overall

bone length error among all methods evaluated. The random uniform distribution method

fail to generate bone lengths that adhere to natural human body proportions, resulting in

poor performance. Conversely, synthetic methods demonstrate superior performance over

random methods, even when not using the mean values in the test set.

Table 5.1 shows the comparison of bone lengths. For the lifting models, We use the

off-the-shelf pretrained models to evaluate the 3D poses. The error is evaluated by de-

composing the predicted poses into bone lengths. We report the results on our device,

which might be slightly different from what they claimed. For the diffusion-based meth-

ods [16, 17, 23] that generates multiple hypotheses, we report the results with the deter-
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Figure 5.1: The average bone length error comparison across all frames of the test set in
Human3.6M. (∗) involving statistics in the test set.

Table 5.1: Quantitative comparison of bone length error. Best in bold and second best
underlined. (∗) including the mean values in the test set. (†) bone length model.

Bone length error
↓ (mm)

Pavllo et al. [15] (T=243) CVPR’19 12.3
Chen et al. [2] (T=50) (†) TCSVT’21 10.3
Chen et al. [2] (T=243) TCSVT’21 8.9
Zheng et al. [25] (T=81) ICCV’21 10.8
Li et al. [13] (T=351) CVPR’22 10.3
Zhang et al. [24] (T=243) CVPR’22 11.0
Gong et al. [7] (T=243) CVPR’23 8.5
Shan et al. [17] (T=243) ICCV’23 10.6
Peng et al. [16] (T=243) CVPR’24 10.9
Xu et al. [23] (T=243) CVPR’24 12.2
Ours, GRU (synthetic) (T=all frames) (*)(†) 7.1
Ours, Bi-GRU (synthetic) (T=all frames) (*)(†) 7.1
Ours, Bi-GRU (synthetic) (T=all frames) (†) 8.9

ministic joint-level aggregation. Our model achieves the state-of-the-art result when not

using the mean values in the test set. Additionally, the GRU model designed for online

processing performs comparably to the Bi-GRU model. The synthetic method incorpo-

rating the test set statistics notably outperforms all other results. Given that the training

set comprises data from only five subjects, the statistics may not fully represent broader

variations, leading to significant disparities between using and not using the mean val-

ues in the test set. With a more comprehensive dataset, our approach could potentially

circumvent such limitations.
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Table 5.2: Action-wise bone length error on Human3.6M with our Bi-GRU model. Best
in bold. Unit: millimeter
Model Dir. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg
Pavllo et al. [15] 13.2 11.9 10.7 11.3 12.2 13.7 11.3 11.7 14.1 16.2 12.8 11.1 13.1 10.4 10.3 12.3
Chen et al. [2] 9.4 9.3 8.9 8.2 8.4 8.5 8.5 8.6 10.1 10.1 8.9 8.1 9 8.6 8.9 8.9
Zheng et al. [25] 11.1 10.8 9.9 10.0 10.6 12 10.1 10.6 11.7 13.1 11.1 10.2 11.5 9.2 9.4 10.8
Li et al. [13] 10.6 10.2 9.4 9.8 10.5 11.9 9.4 9.8 12.6 13.7 10.7 9.3 10.3 8.2 8.2 10.3
Zhang et al. [24] 11.4 11.2 10.2 10.8 10.8 12.1 10 10.8 12.1 14.9 11.2 10.4 11.5 8.9 8.8 11.0
Gong et al. [7] 8.8 8.2 8.1 8.5 8.0 9.6 7.7 8.3 9.4 11.9 8.7 7.5 8.9 7.0 7.2 8.5
Shan et al. [17] 11.3 10.6 10.2 10.3 10.2 11.7 9.8 10.3 11.6 13.6 11.0 10.1 10.3 8.8 8.9 10.6
Peng et al. [16] 11.1 10.7 10.2 10.2 10.5 12.3 9.9 11.0 12.0 14.7 10.8 10.0 11.3 9.6 9.6 10.9
Xu et al. [23] 13.5 12.7 11.4 12.1 11.7 13.4 11.2 11.6 13.1 15.8 12.5 11.7 12.0 10.1 10.7 12.2
Ours, GRU 7.5 7.3 7.5 6.7 7.1 6.6 6.6 6.7 7.1 7.6 7.5 6.3 7.2 7.5 7.4 7.1
Ours, Bi-GRU 7.5 7.2 7.2 7.1 7.3 7 6.7 6.8 7.2 6.9 7.3 6.7 7.3 7.7 7.1 7.1

Figure 5.2: Comparison between the standard deviation of real bone lengths and bone
lengths in Human3.6M.

Table 5.2 presents the action-wise comparison of bone lengths. The actions ”Walk”

and ”Walk Together” are dynamic, providing sufficient information for lifting models

to predict accurate 3D poses. For all models except for [2], we observe a significant

performance gap between these dynamic actions and others. Conversely, [2] trained a

bone length prediction network, resulting in consistent performance across all actions.

Our models exhibit similar consistent performance, demonstrating their robustness across

different types of actions.

Examining Figure 3.2, we observe that the standard deviations of certain bones, such

as spine 2, neck, head, and forearm in the Human3.6M dataset are exceptionally small. As

shown in Figure 5.2, anthropometric research [21] indicates similar standard deviations
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for lengths of the humerus (upper arm) and ulna (forearm). However, in Human3.6M,

standard deviations for the lengths of the upper arm and forearm differ significantly. Ad-

ditionally, the standard deviation of the upper arm closely matches the anthropometric

result for the humerus, while the standard deviation of the lower arm is much smaller than

the anthropometric result for the ulna. These discrepancies may arise from limitations in

the transformation process from MoCap raw data to human poses, potentially influenced

by constraints on body shape or inaccuracies in marker placement within the Human3.6M

dataset.

Even with dataset constraints, our synthetic method consistently outperforms random

methods and the lifting models. We select the model trained with synthetic bone lengths

using the mean value of the entire datset as our final model.

5.2 Bone Length Adjustment

Table 5.3 illustrates the reconstruction error of existing lifting models before and af-

ter applying our adjustment method. The results reported are tested on our device. For

the models generating multi-hypotheses [16, 17, 23], we use the deterministic joint-level

aggregation to obtain the final poses. Across all tested models, we observe consistent per-

formance improvements under both protocol 1 (MPJPE) and protocol 2 (P-MPJPE) after

adjustment with both GRU and Bi-GRU models. Our Bi-GRU model outperforms the

GRU model, showing the advantage of utilizing future information. The degree of im-

provement correlates with the bone length error inherent in the original models. Models

with larger initial bone length errors, such as Pavllo et al. [15], demonstrate significant en-

hancement, achieving a 3% reduction in Protocol 1 error with the adjustment. In contrast,
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Table 5.3: Quantitative comparison of the adjustment process on reconstruction error eval-
uated on Human3.6M under MPJPE and P-MPJPE. Best results of the same base model
are in bold.

Base model Bone length error
↓ (mm) Bone length model MPJPE

↓ (mm)
P-MPJPE
↓ (mm)

Pavllo et al. [15] CVPR’19 12.3
7 46.8 36.5

GRU 45.6 36.1
Bi-GRU 45.2 35.8

Chen et al. [2] TCSVT’21 8.9
7 44.2 35.0

GRU 44.0 34.8
Bi-GRU 43.5 34.5

Zheng et al. [25] ICCV’21 10.8
7 44.3 34.6

GRU 43.3 34.1
Bi-GRU 42.9 33.8

Li et al. [13] CVPR’22 10.3
7 43.0 34.5

GRU 42.5 34.0
Bi-GRU 42.2 33.7

Zhang et al. [24] CVPR’22 11.0
7 40.9 32.7

GRU 40.6 32.5
Bi-GRU 40.2 32.2

Gong et al. [7] CVPR’23 8.5
7 39.5 31.2

GRU 39.4 31.1
Bi-GRU 39.0 30.8

Shan et al. [17] ICCV’23 10.6
7 39.6 31.7

GRU 38.9 31.2
Bi-GRU 38.6 31.0

Peng et al. [16] CVPR’24 10.9
7 40.2 32.2

GRU 39.9 31.9
Bi-GRU 39.4 31.5

Xu et al. [23] CVPR’24 12.2
7 40.2 32.9

GRU 40.1 32.5
Bi-GRU 39.6 32.2
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Table 5.4: Action-wise reconstruction error on Human3.6M before and after adjustment
with our Bi-GRU model. The top table shows the result under protocol 1. The bottom
table shows the result under protocol 2. Best in bold. Red for better results before the
adjustment. Unit: millimeter
Protocol 1 Dir. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg
Pavllo et al. [15] 45.2 46.7 43.3 45.6 48.1 55.1 44.6 44.3 57.3 65.8 47.1 44.0 49.0 32.8 33.9 46.8
Adjusted 41.9 45.2 42.1 44.3 46.2 53.5 43.4 42.1 55.6 64.1 45.5 42.3 47.1 32.0 32.7 45.2
Chen et al. [2] 41.5 43.8 39.8 43.1 46.2 52.5 42.2 41.8 54.1 60.7 45.5 41.6 46.0 31.4 32.4 44.2
Adjusted 40.0 43.0 39.6 42.8 45.9 52.5 41.4 41.0 53.1 60.0 44.9 40.9 45.2 31.3 31.7 43.5
Zheng et al. [25] 41.5 44.8 39.8 42.5 46.5 51.6 42.1 42.0 53.3 60.7 45.5 43.3 46.1 31.8 32.2 44.3
Adjusted 38.9 43.7 38.9 41.3 45.0 50.2 41.1 39.8 52.2 59.5 44.1 41.9 44.3 31.2 31.5 42.9
Li et al. [13] 39.2 43.1 40.1 40.9 45.0 51.2 40.6 41.3 53.6 60.4 43.7 41.1 43.9 29.8 30.6 43.0
Adjusted 37.7 42.5 39.2 40.3 43.7 50.3 40.1 40.3 52.2 59.3 42.8 40.4 43.1 30.1 30.7 42.2
Zhang et al. [24] 37.9 40.9 38.5 39.6 41.9 49.4 39.5 40.1 51.5 55.4 42.0 39.7 41.2 27.8 28.1 40.9
Adjusted 36.2 40.4 37.6 38.5 41.6 49.1 38.7 38.3 51.2 54.2 41.4 38.8 40.6 28.1 28.3 40.2
Gong et al. [7] 35.6 39.5 36.9 38.2 40.6 47.6 38.4 38.5 50.6 53.2 40.8 38.1 40.1 26.9 27.1 39.5
Adjusted 34.9 39.2 36.2 37.6 40.2 47.1 38.1 37.5 49.4 52.3 40.1 37.7 39.9 27.9 27.7 39.0
Shan et al. [17] 37.5 39.7 36.2 37.9 41.1 47.7 38.6 38.1 50.0 52.4 41.1 39.0 39.9 27.2 27.3 39.6
Adjusted 35.7 38.6 35.2 36.3 40.5 46.7 37.6 36.9 49.1 51.7 39.9 37.8 39.4 27.5 26.9 38.6
Peng et al. [16] 37.7 39.9 36.5 37.8 41.7 47.5 38.3 39.8 52.4 55.6 41.2 40.0 39.9 26.7 27.4 40.2
Adjusted 35.6 39.3 35.5 36.8 41.5 47.0 37.2 38.2 51.9 55.3 40.5 38.9 39.6 26.7 27.2 39.4
Xu et al. [23] 39.6 41.2 36.3 38.5 41.6 45.3 38.1 38.5 51.6 54.4 41.8 40.2 40.3 27.8 28.2 40.2
Adjusted 37.3 40.7 35.6 37.7 41.6 45.1 37.6 37.8 50.7 54.1 40.7 39.1 40.1 28.1 28.3 39.6

Protocol 2 Dir. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg
Pavllo et al. [15] 34.1 36.1 34.4 37.2 36.4 42.2 34.4 33.6 45.0 52.5 37.4 33.8 37.8 25.6 27.3 36.5
Adjusted 32.8 35.2 33.1 36.2 35.3 42 33.8 33.1 44.1 52.0 36.5 33.1 37.3 25.0 27.0 35.8
Chen et al. [2] 33.0 35.3 32.6 35.4 35.8 40.4 32.9 32.5 42.3 49.7 36.9 32.5 36.1 25.0 26.3 35.1
Adjusted 31.6 34.3 32.0 34.6 35.1 40.3 32.2 32.2 42.1 49.2 36.2 31.8 35.5 24.3 25.6 34.5
Zheng et al. [25] 32.5 34.8 32.6 34.6 35.3 39.5 32.2 32 42.8 48.5 36.5 32.4 35.3 24.5 26.0 34.6
Adjusted 30.9 33.9 31.4 33.4 34.4 39.2 31.4 31.3 42.0 48.1 35.5 31.7 34.7 23.6 25.2 33.8
Li et al. [13] 31.7 34.9 32.8 33.9 35.3 39.6 31.9 32.3 43.6 49.0 36.3 32.6 34.5 23.8 25.1 34.5
Adjusted 30.5 34 31.6 32.9 34.1 39.2 31.1 31.9 42.5 48.6 35.3 31.9 33.9 23.2 24.7 33.7
Zhang et al. [24] 31.1 33.3 31.3 32.1 32.9 38.7 30.7 31.2 42.5 44.6 34.1 30.7 32.8 21.9 23.0 32.7
Adjusted 30.0 32.8 30.5 31.2 32.7 38.8 30.1 30.5 42.0 44.3 33.5 30.1 32.4 21.5 22.6 32.2
Gong et al. [7] 28.9 31.6 29.7 30.6 31.4 37.1 29.5 29.6 41.2 42.8 32.5 29.3 31.6 20.7 21.7 31.2
Adjusted 28.3 31.0 29.0 30.0 31.0 37.0 29.3 29.3 40.4 42.5 31.9 28.9 31.1 20.7 21.6 30.8
Shan et al. [17] 30.7 32.6 29.9 31.1 31.7 37.1 30.0 29.8 40.6 42.9 33.2 30.4 31.7 21.6 22.5 31.7
Adjusted 29.2 31.6 29.1 29.9 31.3 37.0 29.1 29.2 40.1 42.7 32.5 29.4 31.1 20.9 21.7 31.0
Peng et al. [16] 30.7 32.7 30.1 31.2 32.1 37.4 30.2 31.3 42.1 45.5 33.7 30.6 31.7 21.5 22.7 32.2
Adjusted 29.3 31.8 29.2 30.0 31.8 36.9 29.3 30.5 41.5 45.4 33.1 29.6 31.3 20.7 21.9 31.5
Xu et al. [23] 32.2 34.3 30.7 32.3 33.3 36.1 30.1 31.6 41.9 45.3 34.6 31.9 32.6 22.5 23.7 32.9
Adjusted 30.8 33.2 29.8 31.3 33.2 36.2 29.5 30.9 41.3 45.3 33.8 30.8 32.1 21.8 22.9 32.2
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Table 5.5: Reconstruction error on Human3.6M before and after adjustment and fine-
tuning with our Bi-GRU model fixed. The top table shows the result under protocol 1.
The bottom table shows the result under protocol 2. Best in bold. Unit: millimeter
Protocol 1 Dir. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg
Pavllo et al. [15] 45.2 46.7 43.3 45.6 48.1 55.1 44.6 44.3 57.3 65.8 47.1 44.0 49.0 32.8 33.9 46.8
Adjusted 41.9 45.2 42.1 44.3 46.1 53.5 43.4 42.1 55.5 64.0 45.5 42.3 47.1 32.1 32.9 45.2
Fine-tuned 41.5 45.2 41.9 44.0 45.9 53.6 43.3 42.3 55.3 63.8 45.3 42.2 47.0 31.8 32.4 45.0

Protocol 2 Dir. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg
Pavllo et al. [15] 34.1 36.1 34.4 37.2 36.4 42.2 34.4 33.6 45.0 52.5 37.4 33.8 37.8 25.6 27.3 36.5
Adjusted 32.8 35.1 33.1 36.2 35.2 42.0 33.8 33.1 44.1 52.0 36.5 33.0 37.3 25.0 27.0 35.8
Fine-tuned 32.7 35.3 33.1 35.9 35.3 41.7 33.7 33.3 44.1 52.0 36.4 33.0 37.3 24.9 26.6 35.7

models like Chen et al. [2], which exhibit smaller bone length errors due to effective bone

length prediction, show more modest improvements of around 1% under Protocol 1. Our

adjustment effectively rectifies pose errors for all models under Protocol 2, which under-

goes rigid alignment like scaling. This indicates that our predicted bone lengths possess

better body proportions.

Table 5.4 presents the action-wise comparison. Our adjustment consistently improves

all models across all actions. For the actions ”Walk” and ”Walk Together”, we observe a

decrease in performance for several models [7, 13, 17, 23, 24]. As discussed in Section 5.1,

these models can predict accurate poses for dynamic actions. However, the MPJPE only

measures the error in joint positions. If ourmodel can predict bone lengthsmore accurately

than these models, the MPJPE may still be larger due to errors in bone directions. The

improvement under protocol 2 (P-MPJPE) supports our assumption and demonstrates that

our model achieves better body proportions.

5.3 Fine-tuning

Table 5.5 details the results of our fine-tuning process with the bone length model

fixed. We select Pavllo et al. [15] as the target lifting model and fine-tune it. We fo-
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cus on comparing the result after adjustment and the result after fine-tuning. While the

lifting model already performs well, fine-tuning demonstrates incremental improvements,

particularly noticeable in dynamic actions like ”Walk” (0.3 mm) and ”Walk Together”

(0.5 mm). This highlights the effectiveness of leveraging bone length cues to refine the

model’s predictions.

(a) The MPJPE on the test set

(b) The bone length error on the test set (c) The bone direction error on the test set

Figure 5.3: Training curves of fine-tuning the entire model using model-predicted key-
points as input.

Figure 5.3 illustrates the training curves for fine-tuning the entire model using model-

predicted keypoints. Initially, the model’s MPJPE is 46.5 mm. However, performance

deteriorates immediately after a single epoch, with the MPJPE increasing to 47.9 mm, a

3% rise. After a few epochs, overfitting becomes apparent. We observe a rapid gain on

the bone length error, while the bone direction error slightly decreases. As discussed in

Section 3.4, the bone length model may be affected by erroneous bone directions. Flipping

ambiguity is observed in predicted poses in both the training and test sets, leading to the

bone length model’s failure.
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(a) Trained with data augmentation (b) Trained without data augmentation

Figure 5.4: Training curves of the bone length model with and without data augmentation.
(a) synthetic bone lengths using the mean values in the test set.

Additionally, the bone length model is more likely to overfit since the non-augmented

data used for predicting final poses accounts for half of the inputs to the bone lengthmodel.

As shown in Figure 5.4, the bone length model does not overfit when data augmentation is

applied, while it overfits after several epochs when data augmentation is not applied. This

indicates the effectiveness of data augmentation in preventing overfitting and improving

the robustness of the model.

To sum up, the model overfits when fine-tuning the bone length model due to two

main reasons. First, the predicted bone directions misguide the length model. Second, the

non-augmented data used for fine-tuning the length model exacerbates this issue.

5.4 Inference Speed

In Table 5.6, we evaluate the inference efficiency across three scenarios: (1) the

lifting models alone, (2) the lifting models with our adjustment process, and (3) the bone

length models.

We measure the frames per second (FPS) for these models during real-time online
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Table 5.6: Comparison on Parameters, frame per second (FPS), and MPJPE. The evalua-
tion is performed without test-time augmentation.

Model Frames Parameters (M) FPS MPJPE (mm)
Pavllo et al. [15] 243 16.95 958 46.8
Chen et al. [2] 243 59.18 197 44.2
Zheng et al. [25] 81 9.60 379 44.3
Pavllo et al. [15] (with adjustment) 243 19.34 435 45.6
Chen et al. [2] (with adjustment) 243 61.57 154 44.0
Zheng et al. [25] (with adjustment) 81 11.99 252 43.3
Chen et al. [2] (bone length model) - 8.56 715 -
Ours, GRU model - 2.39 2097 -

processing, where each model predicts a single frame at a time. The horizontal flip aug-

mentation is not applied in the evaluation. We repeat the inference step 10,000 times,

simulating a test on a 10,000-frame video, using a single GeForce GTX 3060 Ti GPU.

As our Bi-GRU model is unsuitable for online processing, we test using our GRU model

instead. After applying our adjustment process, the MPJPE loss improves significantly

with minimal overhead in model size and computation time. Although [15] with adjust-

ment runs at half the FPS compared to without adjustment, it remains faster than the other

models listed. Additionally, the complete human pose estimation includes 2D keypoint

detection and 2D-to-3D lifting. The FPS of most 2D keypoint detection models is lower

than 100. Thus our approach will not be the bottleneck.

For the bone length model, our approach updates bone length values faster than [2].

Our model requires only the input of the new frame at each step, as past information is

stored in the hidden state, whereas [2] needs to randomly select 50 frames from previous

inputs to predict bone lengths. The FPS is limited by our adjustment process that we

decompose poses into bone directions and reconstruct poses with inferred bone lengths.

In summary, our adjustment and fine-tuning methodologies enhance the robustness

and accuracy of existing 3D lifting models, demonstrating their efficacy in improving
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Table 5.7: Abaltion study on different architecture parameters in the bone length prediction
model. Best in bold.

Model Layer Number of units Bidirectional Length error (mm) MPJPE (mm) P-MPJPE (mm)
GRU 1 1 7 7.9 46.0 36.6
GRU 2 1 7 8.0 45.9 36.6
GRU 3 1 7 7.7 45.9 36.7
GRU 1 2 7 7.4 45.8 36.1
GRU 1 3 7 7.5 46.3 36.3
GRU 1 1 3 7.1 45.2 35.8
GRU 2 1 3 7.4 45.4 35.9
GRU 3 1 3 7.6 46.1 36.3
GRU 1 2 3 7.1 45.5 36.6
GRU 1 3 3 6.7 45.9 36.5
LSTM 1 1 3 7.1 45.5 35.8

pose estimation across different evaluation protocols and dynamic scenarios. In real-time

online processing, our adjustments achieve competitive results with minimal efficiency

overhead.

5.5 Ablation Study

We perform extensive ablation experiments on Human3.6M under bone length error,

protocol 1 (MPJPE), and protocol 2 (P-MPJPE). We use the prediction of [15] and apply

the bone length adjustment on the poses. All the errors are evaluated on these adjusted

poses.

We conduct the ablation study on the bone length model, fine-tuning, and inference

process. The results are presented in Section 5.5.1, Section 5.5.2, and Section 5.5.3, re-

spectively.

5.5.1 Bone Length Model

We compare different model architectures for the bone length prediction model. For

data augmentation, we use synthetic bone lengths aligned with the mean values of both
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Table 5.8: Abaltion study on the bone length model. MPJPE is applied as a loss function
in all cases.

Bone length model Bone length loss Bone direction loss MPJPE (mm) P-MPJPE (mm)
7 7 7 46.8 36.5
7 3 7 47.5 37.2
7 7 3 48 37.1
3 7 3 45.0 35.7

the training set and test set of Human3.6M. We apply GRU and LSTM as the RNN units.

The number of layers determines how many layers are in a single unit, while the number

of units indicates how many units are in the model. For example, there is one unit with a

single layer in Figure 3.3 (a), and there are two units with a single layer in Figure 3.3 (b).

The hidden states of the last layer are concatenated and input to the regression head.

The results in Table 5.7 demonstrate that the best performance is achieved using

bidirectional GRU units, highlighting the importance of leveraging future information.

Although the model with three Bi-GRU units achieves the lowest bone length error, it

does not perform well in bone length adjustment. We observe that models with higher

complexity tend to have worse performance in bone length adjustment. Notably, the best

GRU model has the same size as the best Bi-GRU model (a single Bi-GRU is equivalent

to two GRUs). Moreover, the performance is similar between GRU and LSTM. Given the

lower computational complexity of GRU, we decided to use GRU instead of LSTM.

5.5.2 Fine-tuning

In our work, we fine-tune the lifting model [15] with bone length information. We

compare to the result of fine-tuning the same lifting model without the bone length pre-

diction model. For not using the bone length model, we apply the loss function directly to

poses predicted by the lifting model. The loss including bone length loss, bone direction

loss, and MPJPE.
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Figure 5.5: Comparison of using different input sequence lengths in our GRU model on
the test set of Human3.6M.

The results in Table 5.8 illustrate the impact of incorporating our bone length pre-

diction model. Interestingly, the model performs worse when fine-tuning with either the

bone length loss or the bone direction loss. Since no data augmentation is applied, the

bone length loss does not contribute much additional information. Regarding the bone

direction loss, although the MPJPE is higher compared to using the bone length loss, the

P-MPJPE is improved. This discrepancy suggests that the model may prioritize learning

bone directions over accurately predicting joint positions. After incorporating our bone

length model, we observe a significant improvement in the results. This demonstrates the

efficacy of our approach in enhancing 3D human pose estimation.

5.5.3 Inference

In real-world applications, human pose estimation is often used for online processing.

Since the bone lengths of the subject remain constant throughout the video, continuous up-
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dates of bone lengths are unnecessary. Additionally, continuously updating bone lengths

can compromise their consistency. Therefore, it is preferable to predict bone lengths us-

ing a short sequence and then stop updating them. This approach ensures that the bone

lengths remain consistent throughout the video. To evaluate the efficiency of our model in

predicting precise bone lengths, we tested it by starting from the beginning of the videos

and updating the bone lengths with our GRU model. These predicted bone lengths were

then used to adjust the poses predicted by [15]. The results, shown in Figure 5.5, indicate

that the errors rapidly converge in fewer than 10 frames. This demonstrates that our model

can predict precise bone lengths using a short input sequence, thereby imposing minimal

efficiency overhead when applied to existing models.
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Chapter 6 Conclusions and Future

Work

In this thesis, we introduced a novel approach for enhancing 3D human pose esti-

mation by integrating precise bone length prediction and adjustment methods. For bone

length prediction, we developed a GRU-based model along with a novel data augmenta-

tion technique involving synthetic bone lengths.

In this section, we conclude our findings in Section 6.1 and outline future work in

Section 6.2.

6.1 Conclusions

The main observations are listed as follows:

• In Section 5.1, the comparison between different data augmentation approaches

shows that the synthetic bone lengths effectively improve the performance of our

bone length prediction model.

• The comparison between bone length errors in Section 5.1 reveals that both our

GRUmodel andBi-GRUmodel, when using synthetic data for augmentation, achieve
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the lowest bone length errors on the Human3.6M dataset. Additionally, our Bi-

GRU model attains state-of-the-art performance even without relying on ground

truth mean values of bone lengths.

• In Section 5.1, we observe that the Human3.6M dataset has inaccuracies in the joint

positions of the wrists, indicating that they are not accurately located.

• For the experiments in Section 5.2, our bone length adjustment technique refines the

poses generated by existing 2D-to-3D lifting models, which significantly reduces

MPJPE and P-MPJPE errors, particularly in models with higher initial bone length

errors. This demonstrates that our model effectively learns better body proportions

from synthetic bone lengths.

• The results in Section 5.3 indicate that our fine-tuning process further improves pose

estimation accuracy, especially for dynamic actions. However, when we attempt to

fine-tune the bone length model simultaneously, the model overfits immediately.

• In the experiments in Section 5.4, our GRU-model achieves high FPS in real-time

processing, illustrating the small overhead of our adjustment process.

• The ablation study on inference process in Section 5.5 shows that our bone length

prediction model can achieve high precision within 10 frames.

Overall, our approach effectively enhances the anatomical accuracy of 3D human

pose predictions, demonstrating significant improvements in error metrics and robustness

across various models and activities.
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6.2 Future Work

We observe several limitations in our work that we are unable to overcome in a short

time. Therefore, we will address them as future work.

• To improve the quality of Human3.6M, we can create a new MoCap dataset with

a wider variety of bone lengths and a consistent definition of joint positions across

different subjects.

• We can fine-tune more lifting models and test our methods on different Mocap

datasets to show the generality of our methods.

• We failed in fine-tuning the entire model since flipping ambiguity in bone directions

misguide the bone length model. Solving flipping ambiguity not only improves

the performance of lifting models, but also provides a chance to fine-tune flipping

models and our bone length model simultaneously.
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