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Abstract

Current approaches to 3D human pose estimation primarily focus on regressing 3D
joint locations, often neglecting critical physical constraints such as bone length consis-
tency and body symmetry. This work introduces a recurrent neural network architecture
designed to capture holistic information across entire video sequences, enabling accurate
prediction of bone lengths. To enhance training effectiveness, we propose a novel augmen-
tation strategy using synthetic bone lengths that adhere to physical constraints. Moreover,
we present a bone length adjustment method that preserves bone orientations while substi-
tuting bone lengths with predicted values. Our results demonstrate that existing 3D human
pose estimation models can be significantly enhanced through this adjustment process.
Furthermore, we fine-tune human pose estimation models using inferred bone lengths,
observing notable improvements. Our bone length prediction model surpasses the previ-
ous best results, and our adjustment and fine-tuning method enhance performance across

several metrics on the Human3.6M dataset.
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Chapter 1 Introduction

In this chapter, we provide a brief introduction to this thesis. Section 1.1 introduces
the human pose estimation and the 2D-to-3D task. Section 1.2 discusses the motivation
behind this thesis. Section 1.3 describes our research topic and key contributions. Finally,

Section 1.4 outlines the contents of the subsequent chapters.

1.1 3D Human Pose Estimation

3D human pose estimation aims to localize the 3D positions of human joints from
monocular images or videos, holding significant implications for applications such as
human-computer interaction, sports analysis, and medical diagnostics, due to its capac-
ity to capture human motion. Presently, two-stage approaches dominate in 3D human
pose estimation. These methods initially detect 2D keypoints from input images or videos
and subsequently lift these 2D keypoints into 3D space, which is known as the 2D-to-3D

lifting task.

The 2D-to-3D lifting task faces inherent challenges due to depth ambiguity: mul-
tiple 3D poses can project to the same 2D keypoints. A simple example is the flipping
ambiguity described by [18], where finite possible 3D poses arise by flipping each bone
forwards or backwards. This ambiguity intensifies when bone lengths are unknown or

1 doi:10.6342/NTU202402242
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when 2D keypoints are inaccurate. Recognizing the importance of temporal information
in resolving depth ambiguity, recent studies have employed recurrent neural networks
(RNNs) [8, 12], temporal convolutions [2, 15], and transformer-based models [13, 24, 25]

to extract temporal features.

1.2 Motivation

Despite recent advancements, many existing methods overlook the natural structure
of human poses. Studies have shown that focusing solely on minimizing per-joint errors
independently neglects overall pose coherence. Addressing this issue, bone-based repre-
sentations have been proposed [20]. Chen et al. [2] introduced a method to decompose
human poses into bone lengths and directions, simplifying the pose estimation task. How-
ever, integrating physical constraints such as bone length consistency and body symmetry

remains a challenge, with significant bone length errors observed in existing works.

We evaluated bone lengths with several state-of-the-art lifting models and found that
they do not predict accurate and consistent bone lengths. Although Chen ef al. [2] trained
a bone length prediction network in their model and achieved high accuracy in bone length
prediction, bone length consistency is still neglected. As shown in Figure 1.1, the right

forearm length changes over time.

1.3 Research Topic and Contribution

Inspired by previous work [2], we propose RNN-based models to predict bone lengths.
Our models leverage global information from all frames of a video, rather than short se-
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Figure 1.1: Evaluating the variation in right forearm length over time with Chen et al. [2]
on S9 Direction 1 in Human3.6M test set.

quences. To enhance training effectiveness, we introduce a novel training time augmen-
tation method using synthetic bone lengths generated by the statistical body shape model
called SMPL [14]. This augmentation ensures that predicted bone lengths respect sym-
metry constraints and adhere to natural human body proportions. Unlike the method in
[2] that randomly adjust bone lengths, potentially distorting body proportions, our method

prioritizes realistic and accurate predictions.

We propose a novel adjustment method to enhance current state-of-the-art 2D-to-
3D lifting models. This method preserves bone directions while replacing bone lengths,
ensuring that the adjusted poses maintain anatomical correctness and achieve more precise
joint positions. Finally, we fine-tune existing 2D-to-3D lifting models using bone length
information. This fine-tuning process further improves model performance and can be

applied to any 2D-to-3D lifting model, demonstrating its versatility and effectiveness.

The contributions of this work are fourfold:

3 doi:10.6342/NTU202402242


http://dx.doi.org/10.6342/NTU202402242

» We propose a new data augmentation with synthetic bone lengths to satisfy physical

constraints.

* We propose a novel bone length prediction model that effectively utilizes global

information.

* We introduce a bone length adjustment method that enhances existing 2D-to-3D

lifting models, ensuring realistic body shapes and accurate joint positions.

* We demonstrate the efficacy of fine-tuning existing models with predicted bone

lengths, thereby improving their performance in 3D human pose estimation tasks.

1.4 Chapter Overview

In this chapter, we provide a brief introduction to our work. In Chapter 2, we will
discuss related work. Chapter 3 elaborates on our proposed methods. The experimental
setup is introduced in Chapter 4, followed by a discussion of the experimental results in
Chapter 5. Finally, Chapter 6 concludes the findings and points out the limitations of this

thesis.
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Chapter 2 Related Work

In this chapter, we will introduce previous studies related to our work. We discuss
the related work on 3D human pose estimation in Section 2.1 and the related work on

Recurrent Neural Network (RNN) in Section 2.2.

2.1 3D Human Pose Estimation

We split this section into three parts: overview, 2D keypoint detection, and 2D-to-3D
lifting. In the overview, we introduce related work on solving 3D human pose estimation
(Section 2.1.1), covering 2D keypoint detection (Section 2.1.2) and the 2D-to-3D lifting

task (Section 2.1.3).

2.1.1 Overview

3D human pose estimation using deep learning methods can be categorized into two

main approaches: the end-to-end approach and the two-stage approach.

The end-to-end approach predicts 3D human poses directly from RGB images. These
methods [10, 11, 22] heavily rely on parametric 3D human shape models, such as SMPL
[14]. They estimate parameterized pose, shape, and translation, which are then decoded
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via the SMPL model to obtain the human pose and shape.

In contrast, the two-stage approach first detects 2D positions of joints in an image,
known as 2D keypoints. Techniques such as convolutional neural networks (CNNs) gen-
erate heatmaps that indicate the probability of joint locations [3, 19]. In the second stage,
these 2D keypoints are used to estimate the 3D pose of the human figure, which is called
2D-to-3D lifting task. Currently, the two-stage approach tends to be more accurate than
the end-to-end approach. End-to-end methods struggle with a lack of diversity in video
data, especially variations in background, due to the complex requirements of 3D pose
datasets, such as motion capture systems and high-speed cameras. This issue is mitigated
in the two-stage approach since 2D keypoints can be manually labeled, and modern 2D

keypoint detectors achieve high precision.

2.1.2 2D Keypoint Detection

There are two common approaches for 2D keypoint detection: the top-down approach
and the bottom-up approach. The top-down approach first localizes the bounding box of a
single subject and then detects keypoints within the bounding box [3, 19]. In contrast, the
bottom-up approach directly detects all keypoints in the image, which may contain mul-
tiple subjects [6]. While the top-down approach has higher time complexity, it generally

achieves superior performance compared to the bottom-up approach.

Since a human joint, like the wrist, cannot be accurately represented by a single pixel
in an image, detected keypoints only approximate the positions of joints. Recent works
address this by predicting heatmaps that represent the probability distributions of joints in
an image. The pixel points with the highest probability are considered the positions of the
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keypoints.

2.1.3 2D-to-3D Lifting

The 2D-to-3D lifting task is an ill-posed problem that involves predicting the addi-
tional depth dimension. Models that address this task are known as lifting models. Recent
works have utilized temporal information by predicting the human pose of the central
frame from a sequence of 2D keypoints in a video. The context information provides
clues about the movement of the target, making the predicted poses more robust to noise.
Hossain and Little [8] designed a sequence-to-sequence model based on Long Short-Term
Memory (LSTM) to obtain temporally consistent 3D poses. Pavllo ef al. [15] proposed a
model based on dilated temporal convolution to capture long-term information and reduce
computational overhead compared to LSTM models. Chen et al. [2] demonstrated that di-
viding the task into bone length and bone direction prediction yields better results. Zheng
et al. [25] used transformer-based models to encode both spatial and temporal informa-
tion. Li et al. [13] further applied transformer-based models to generate multiple plausible
pose hypotheses and aggregate hypothesis features to estimate human poses. After the de-
noising diffusion models have emerged, a probalistic method based on diffusion models
is applied to human pose estimation, i.e. refining predicted poses [7] or generating several

hypotheses [16, 17, 23].

However, several challenges in the 2D-to-3D lifting task, such as self-occlusion and
the accuracy of bone lengths, remain inadequately addressed. In the following sections,

we will elaborate on these difficulties and the corresponding solutions.
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(2) (b)

Figure 2.1: Illustration of self-occlusion. (b) the model predicted keypoint of the wrist is
labeled by a red point and the correct keypoint position is labeled by a green point.

Self-occlusion. As shown in Figure 2.1, the left hand is occluded by his torso, leading to
inaccurate keypoint detection. Although the self-occlusion is unpreventable by the limited
view from a single camera, the same joint is not always occluded in a video, enabling

mitigating the noise by inferring with a sequence of keypoints that is sufficiently long.

Chen et al. [2] addresses this issue by incorporating the 2D keypoint visibility score,
evaluated using the predicted heatmaps from keypoint detection models. The visibility
score indicates the confidence level for each keypoint’s visibility. When a joint is difficult
to locate, such as when it is occluded or blurred, the visibility score is lower, suggesting
that the predicted keypoint is more likely to be inaccurate. This score provides crucial
information for lifting models to assess the reliability of keypoints, thereby enhancing
robustness. Additionally, the visibility score can reveal relative depth. For instance, in
Figure 2.1, the left wrist keypoint is occluded by the torso. Estimating the depth of the
left wrist relative to the chest is challenging when pictorial information is lost. If the left
wrist has a lower visibility score compared to the chest, it indicates that the wrist is likely

behind the body

8 doi:10.6342/NTU202402242
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gt predicted

Figure 2.2: The inference result of [2] on a self-occluded video. Left: the target frame.
Middle: groundtruth 3D pose. Right: predicted 3D pose.

[Bone Direction Loss ]

Bone Direction
Consecutive ”| Prediction Network
L;a Frames

> Bone Directions

]
Joint Sr)ift Loss

Randomly™y| Bone Length
Sampled Prediction Network

Frames \
MPJPE Loss [Bone Length Loss J

Figure 2.3: The framework of Anatomy3D [2], illustrating the bone direction prediction
network and the bone length prediction network.

Y

Bone Lengths

However, the visibility score does not always accurately reflect visibility confidence.
Figure 2.2 shows a failed case where the visibility of the left wrist is the highest among all

keypoints, resulting in an incorrect prediction of the left wrist being in front of the body.

Anatomy3D. Chen et al. [2] proposed an anatomy-aware approach called Anatomy3D,
which simplifies the 2D-to-3D lifting task by dividing it into bone length prediction and
bone direction prediction, as illustrated in Figure 2.3. The bone direction prediction net-
work uses consecutive local frames as input as most lifting models do. The bone length
network leverages the global information by randomly sampling frames across the entire

video
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h, h;

[

he
M == h—> M —> M —

[

Xt Xo Xi

Figure 2.4: The illustration of the Recurrent Neural Network (RNN) with an unfolded
workflow. x;: the input. M: the RNN model. h;: the hidden state.

To address the limited diversity in bone lengths in the Human3.6M dataset’s training
set, which contains only five subjects, they introduced a training-time augmentation for the
bone length prediction task. During this augmentation process, a new set of bone lengths
is randomly generated and used to replace the bone lengths of the given ground truth 3D
poses, while preserving the bone directions. Additionally, the trajectory of a sequence of
3D poses is randomly shifted. Finally, the augmented 3D poses are projected onto the

camera plane, resulting in the input 2D keypoints.

2.2 Recurrent Neural Network (RNN)

The Recurrent Neural Network (RNN) is designed for processing sequential data.
Unlike traditional neural networks, an RNN has connections that form directed cycles,
allowing information to persist. This makes the RNN suitable for tasks where context
from previous inputs is crucial, such as time series prediction, language modeling, and

speech recognition.

In an RNN, a hidden state is maintained to capture temporal information from previ-
ous inputs. At step ¢, an RNN takes an input x; together with the last hidden state h;_; to
evaluate a new hidden state h;. This hidden state h, is then passed to the next step. The
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update process can be written as:

hy =W, -x; + Uy - hy_1 + by,
where W, Uy, and b;, are learnable parameters.

Next, we will introduce the variations of RNN models: bi-directional RNN (Bi-

RNN), long short-term memory (LSTM), and gated recurrent unit (GRU).

2.2.1 Bi-directional RNN (Bi-RNN)

While the RNN is designed to capture information from previous inputs, the Bi-
directional RNN (Bi-RNN) adds another layer to process inputs in reverse order, known as
the backward RNN. The outputs from the forward and backward RNNs capture both past
and future information, which can be particularly helpful for tasks like language modeling

where the context to the right of the target word is important.

2.2.2 Long Short-Term Memory (LSTM)

RNNs often struggle to maintain long-range dependencies and suffer from the van-
ishing gradient problem. LSTM networks address these issues by introducing an addi-
tional cell state and three gates: the input gate, the forget gate, and the output gate. These
gates regulate the flow of information that should be passed to the next step, effectively
maintaining important long-range dependencies and mitigating gradient vanishing.
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2.2.3 Gated Recurrent Unit (GRU)

Gated Recurrent Units (GRUs) [5] simplify the LSTM by combining the input gate
and the forget gate, reducing computational complexity. Although GRUs simplify the
model structure, there is no definitive conclusion that either the LSTM or the GRU per-

forms better overall; their effectiveness can vary depending on the specific task and dataset.

12 doi:10.6342/NTU202402242


http://dx.doi.org/10.6342/NTU202402242

Chapter 3 Methods

In our work, we aim to predict bone lengths that are accurate, consistent, and reason-
able in body proportions. Our work consists of four main components: data augmentation,
bone length prediction, bone length adjustment, and fine-tuning. Section 3.1 details our
bone length augmentation method, Section 3.2 discusses our model design for predict-
ing bone lengths, Section 3.3 explains how we apply our bone length prediction model to

enhance 2D-to-3D lifting models, and Section 3.4 describes our fine-tuning methods.

3.1 Bone Length Augmentation

In this section, we detail the bone length augmentation method in three parts. We
first elaborate the data augmentation process (Section 3.1.1. Then we introduce the aug-
mentation with random bone lengths (Section 3.1.2) and synthetic bone length (Section

3.1.3).

3.1.1 Augmentation Process

We represent a human pose P = [pg - - pJ—l]T € R7*3 with J 3D joint positions as
a tree structure, as shown in Figure 3.1 (a). The root joint is positioned on the pelvis and
labeled as joint 0. For each joint p; € IR3, its parent is defined as the joint closer to the
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Bone

Directions
Bone New Bone
Lengths Lengths
(a) (b)

Figure 3.1: (a) The representation of a human pose with joint labels. (b) The overview of
bone length replacement, which involves decomposing the pose into bone directions and
bone lengths, and then substituting the original bone lengths with new ones.

root (e.g., joint 0 is the parent of joint 1). The pose can be decomposed into bone lengths
L=l -1;24)" € RY-Dx! and bone directions D = [d; - - - d;_;]" € RZ-D*3 yging

the following equations:

li = Hpi_pparent(i)HQ, 1= 1,...,J— 1

(3.1)
Di — Pparent(s)

di = ;
l;

Here, vertices (joints) are labeled from 0 to J — 1 and the edges (bones) are labeled

from 1 to J — 1. Given L and D, the original pose P can be reconstructed.

In the augmentation process, we first decompose a pose P into bone lengths L and
bone directions D. We then use new bone lengths L' = [/f ---1/;_,] " and the original bone
directions D to reconstruct a new pose P = p1---D J_l}T. The bone length replacement
process is illustrated in Figure 3.1 (b). A random shift s € R3 is added to the poses to

enhance the augmentation. The final result is the augmented pose P’ = [p’l e pf]_l} T
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Figure 3.2: This error bar plot shows the means and the standard deviations of bone lengths

in the Human3.6M dataset. Each mean value is represented by a dot, and the associated

standard deviation is shown by the bars, indicating the variability around the mean bone
lengths.

s~N(u=0,0=0.5)
(3.2)
pi=pi+s, i=1,...,J-1

For a sequence of poses, the same random shift should be applied to preserve smooth-
ness in the trajectory. Since we use 2D keypoints as the model input, we project the pose P’
onto the 2D camera plane considering the camera intrinsic matrix (focal length and prin-
cipal point), and both radial and tangential nonlinear lens distortion. Our model learns

to predict L' from the projected 2D keypoints. The key to the augmentation process is

generating reasonable bone lengths I/,

3.1.2 Random Bone Lengths

Before introducing our augmentation method, we briefly discuss the approach used

in [2]. They randomly adjust bone lengths L based on the average bone lengths L =
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[0 - Zf,,JT € RU=Dx1 in the batch.

l;:lz—f-rzl“ TZNU(—OS,O?)), Z:]_,,J—]_
(3.3)

l; =1}, if they are the same body part on different side.

7

The proportion varies between —30% to 30%, which can lead to L' deviating from
natural human anatomical structures. For example, this method could generate an unnatu-
rally long forearm combined with a short upper arm. Additionally, L' might lack symmetry
because each bone is adjusted independently by different random values. In our experi-
ments, we ensure symmetry by applying identical random adjustments to corresponding

bones on both sides of the body.

As shown in Figure 3.2, the variability of each bone length is different. For instance,
subjects in the Human3.6M dataset have similar lengths of forearms but differ in lengths
of upper arms. Intuitively, we may randomly adjust the bone lengths by applying a normal

distribution:

l;NN(ll,O'Z)7 Zzl,,J—l
(3.4)

l; =1, if they are the same body part on different side.

(2

where the mean value is the i-th original length and o; denotes the standard deviation of
the ¢-th bone length in the Human3.6M dataset. We also maintain the symmetry in this

casc.
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3.1.3 Synthetic Bone Lengths

SMPL [14] is a model that generates 3D human meshes from parameters. We use
SMPL to randomly generate human meshes and then evaluate the bone lengths from these
meshes. This ensures that the bone lengths are symmetric and reasonable, reflecting nat-
ural body shapes. To evaluate bone lengths from meshes, we apply the joint regression

matrix J introduced in [4] to mesh coordinates M:

L=JM (3.5)

The 3D poses in the Human3.6M dataset are recorded using a marker-based motion
capture system, where the position of each joint depends on the placement of the markers.
Consequently, a single joint regression matrix cannot accurately describe the positions of
the joints. When using a single joint regression matrix, the distribution of the regressed
bone lengths differs from that of the Human3.6M dataset, as shown in Figure 3.2, leading
to poor predictive ability. To mitigate the difference in data distribution, we align the mean
value of the regressed bone lengths with the mean value in the Human3.6M dataset. After

the alignment, we obtain the augmented bone lengths L'.

3.2 Bone Length Model

The structures of our models are illustrated in Figure 3.3. Our primary model, de-
picted in Figure 3.3 (a), utilizes a single-layer bidirectional gated recurrent unit (Bi-GRU)
[5]. This Bi-GRU model processes the entire sequence of 2D keypoints from a given

video, leveraging both past and future information for improved prediction accuracy.
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Figure 3.3: The structures of our bone length prediction models. The input length is 3 for
illustration.

However, due to its reliance on future data, the Bi-GRU model is not suitable for real-time
online processing. To address this limitation, we also developed a GRU model, shown in
Figure 3.3 (b), which updates bone lengths by processing the input keypoints frame by
frame, making it suitable for online applications. In this section, we specifically introduce

the Bi-GRU model.

During training, we slice the sequences of 2D keypoints into fixed-size segments
for convenience. The input sequence of 2D keypoints is denoted by X = [xo- - xy| €
RN*(/x2) \where N is the sequence length, .J is the number of joints, and x; € R?” is the
flattened vector of 2D keypoints at frame ¢. A linear projection layer maps each x; to a

higher dimension c.

), = Wz, + b, (3.6)

where W), is the weight matrix and b, is the bias vector in the linear projection layer.

The projected vectors x; € R€ are then input to the GRU. The forward process at
frame ¢ can be written as
h,t - GRU(X;, h’t—l) (37)

18 doi:10.6342/NTU202402242


http://dx.doi.org/10.6342/NTU202402242

Bone Length Adjustment

| | 3D Pose 5 ‘ Decompose Bone Bone Direction
I Estimation { Directions Loss

Reconstruct

f
N
1 —>» MPJPE Loss

\\ ==

e Bone Length Bone
o — "
Prediction Lengths

Figure 3.4: The overview of bone length adjustment. The 3D pose estimation is based on
existing 2D-to-3D lifting models. The blue part is based on existing lifting models. Only
the parameters in blue part are fine-tuned.

where h; € R is the hidden state at frame ¢ with hidden size ¢/, and the initial hidden state
h, is a zero vector. The backward process is similar but processes X| in reverse order.
We concatenate the final hidden states from the forward process and backward processes
to obtain b € R?®'. The bone lengths L € R/~1*! are then regressed from h using the
weight matrix Wg.

L =Wgh (3.8)

Our goal is to minimize the difference between the predicted bone lengths L and the

groundtruth bone lengths L. The loss function is defined by the mean absolute error:

1 J-1 .
L] = —— I — 1 3.9
=g 2 =l (3.9)

3.3 Bone Length Adjustment

Figure 3.4 provides an overview of our bone length adjustment method. This tech-
nique is applied to the human poses predicted by existing 2D-to-3D lifting models. The
bone length adjustment involves replacing the bone lengths of the human poses with our
predicted bone lengths, as illustrated in Figure 3.1 (b).
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Given a sequence of 2D keypoints X and a lifting model, we first obtain predicted
poses P from the lifting model. The sequence X is segmented to fit in the input require-
ments of the lifting model. We then decompose the poses P into bone lengths L and bone
directions D. Concurrently, we use the entire sequence X to predict new bone lengths L
with our model. By combining the bone directions D from the lifting model and the bone
lengths L from our model, we generate the reconstructed poses P’. This process refines

the poses, ensuring a more realistic body structure.

To evaluate the adjustment process, we use the Mean Per Joint Position Error (MPJPE)

to measure the error between the reconstructed pose P’ and the groundtruth pose P:
=
—_— , JR— N .
Lp= j;HPZ Dill2 (3.10)

3.4 Fine-tuning

Fine-tuning the entire model (both the bone length model and the lifting model) is
very challenging. Therefore, we considered first fine-tune the lifting model while keeping
the parameters in the bone length model fixed. In this section, we introduce two fine-
tuning methods: fine-tuning solely on the lifting model (Section 3.4.1 and fine-tuning the

entire model (Section 3.4.2.

3.4.1 Fine-tuning on Lifting Model

we decided to fix the parameters of the length model for two main reasons. First,

bone directions are more challenging to learn compared to bone lengths, leading to er-
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roneous bone directions. For instance, as discussed in Section 2.1.3, the predicted bone
direction may point forward, when it should point backward. With these failed directions,
the model struggles to find suitable bone lengths that the reconstructed poses are close to

the groundtruth poses, thereby reducing learning efficiency in bone length prediction.

Second, the input keypoints differ between the lifting model and the bone length
model. In the two-stage estimation, 2D-to-3D lifting follows keypoint detection, so previ-
ous works use predicted keypoints as input. However, when applying data augmentation,
keypoints are obtained by projecting augmented poses, making them groundtruth key-
points. This discrepancy makes it unsuitable to fine-tune the lifting model and the bone

length model simultaneously.

In our adjustment process, bone lengths can also enhance the lifting models’ ability
to predict bone directions. We propose a fine-tuning method based on our adjustment
process. Since the lifting models are trained with predicted 2D keypoints, we can not
apply data augmentation that generates groundtruth keypoints. To prevent overfitting, the
bone length prediction model is fixed during this process. We fix the weights of our bone
length model and fine-tune the lifting models by minimizing the error in the predicted
bone directions and the MPJPE of the reconstructed pose P’. The direction loss is defined

as:

J—1
1 ~
=——> " |d; - d; 11
‘cD J—1 - Hdz dzHQ (3 )

where d; is the predicted direction and ciz is the groundtruth direction of the i-th bone. The

total loss combines both the direction loss and the position error loss:
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Figure 3.5: The overview of the fine-tuning method on the entire model. The blue part is
based on existing lifting models.

L=Lp+Lp (3.12)

3.4.2 Fine-tuning on the Entire Model

To achieve a comprehensive evaluation of our bone length model, we fine-tune the
entire adjustment process, including the bone length prediction component. We incorpo-

rate data augmentation in the fine-tuning process, as illustrated in Figure 3.5.

Given a sequence of 2D keypoints X, we generate augmented keypoints X’ and the
corresponding bone lengths L. In the lifting model branch, we first predict the 3D pose
using the lifting model and then decompose it into bone directions D. The direction loss

is the same in 3.11.

In the bone length model branch, we predict the target bone lengths using the key-
points X, resulting L. For the augmented data, we predict L’ from the augmented key-
points X'. To prevent overfitting, we only evaluate the bone length loss between L’ and
the augmented data L';
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1 .
Lrg = 57 2 W=l (.13)

We reconstruct the final pose P’ with the bone directions D and the bone lengths
L. The MPJPE loss is evaluated to fine-tune both the lifting model and the bone length

model. The total loss function is given by:

£:£D+£P+£L,wg (3.14)
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Chapter 4 Experimental setup

In this chapter, we first discuss the dataset in Section 4.1 and the evaluation metrics
in Section 4.2. We then provide implementation details, including the environment in
Section 4.3 and parameter settings in Section 4.4. Section 4.5 outlines the experiments

conducted. The results of these experiments are discussed in Chapter 5.

4.1 Human3.6M Dataset

The Human3.6M dataset [1, 9] is the widely used Motion Capture (MoCap) dataset
in the field of human pose estimation. It contains 3.6 million frames featuring 11 actors
(5 females and 6 males) performing 15 diverse actions, such as walking, taking photos,
and sitting. The dataset includes high-resolution video recorded by four synchronized
cameras operating at 50 Hz, providing diverse perspectives for each action. Seven subjects
are annotated with 3D poses, captured using a high-speed MoCap system. Following the
standard protocol in prior works [2, 13, 15, 24, 25], we train our model on five subjects
(S1, S5, S6, S7, S8) and test on two subjects (S9, S11), using a 17-joint skeleton.
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Figure 4.1: Two poses with similar body shapes having identical keypoints

4.2 Evaluation Metrics

For bone length evaluation, we use the bone length error as described by Equation

3.9, comparing the predicted to the groundtruth lengths.

For human poses, we use two protocols: Protocol 1 measures the Mean Per Joint Posi-
tion Error (MPJPE), the average Euclidean distance between the predicted and groundtruth
joint positions, and Protocol 2 (P-MPJPE) reports the error after applying Procrustes anal-
ysis, which aligns the predicted poses with the groundtruth in terms of translating, rotating,

and uniform scaling.

Since the distance between the subject and the camera is unknown, poses after scaling
and translating can be projected to identical keypoints, as shown in Figure 4.1. Although
the two poses in the figure appear similar in body shape, the MPJPE between them is large.
By applying Procrustes analysis, the poses become aligned, enabling us to better evaluate

the accuracy of the predicted body structure.
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4.3 Environment

Our experiments are tested on two different devices. We trained all of the models
on TWCC. For the inference speed, we test on our local device. On both devices, we test

under a single GPU. The settings are as following:

« TWCC

— CPU: Intel(R) Xeon(R) Platinum 8280 CPU @ 2.70GHz
— RAM: 90 GB

— GPU: NVIDIA Tesla V100 SXM2
* Local device

— CPU: 12th Gen Intel(R) Core(TM) 15-12400 @ 2.50 GHz
— RAM: 32 GB

— GPU: NVIDIA GeForce RTX 3060 Ti

4.4 Parameter Settings

We discuss the parameter settings for bone length prediction in Section 4.4.1 and for

fine-tuning in Section 4.4.2.

4.4.1 Bone Length Prediction

We align the mean value of our synthetic bone lengths with the Human3.6M dataset.

Our study evaluates five different methods for generating bone lengths, detailed in Section
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3.1:

* Random Uniform Distribution: Randomly generated bone lengths from a uniform

distribution.

* Random Normal Distribution (Training Set Std): Bone lengths generated from

a normal distribution using standard deviations from the training set.

* Random Normal Distribution (Human3.6M Std): Bone lengths generated from

a normal distribution using standard deviations from both the training and test sets.

* Synthetic Aligned with Training Set: Synthetic bone lengths aligned with the

mean values in the training set.

* Synthetic Aligned with Human3.6M: Synthetic bone lengths aligned with the

mean values in both the training and test sets.

During training, we use a sequence length NV = 512 and utilize the entire sequence
during testing. The projected dimension c is set to 256, and the hidden state dimension ¢’ is
set to 512. We train our models using the Adam optimizer with an exponentially decaying
learning rate schedule. The initial learning rate is set to 0.0001, and it decays by a factor
0f 0.95 each epoch. The batch size is set to 256. We train our model with groundtruth 2D
keypoints which are projected from synthetic poses and test our model with 2D keypoints

predicted by the Cascaded Pyramid Network (CPN) [3].

4.4.2 Fine-tuning

For fine-tuning, we select Pavllo et al. [15] as our fine-tuning target. We configure
the sequence length N to 243, and apply horizontal flip augmentation during both training
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and testing, following their settings. We fine-tune the model using the Adam optimizer
and a batch-normalization momentum set to the final state 0.001. Similarly, we employ
an exponentially decaying learning rate schedule, starting at 0.00004 with a decay factor
0f 0.95 per epoch. The batch size for fine-tuning is set to 1024, consistent with their work.
We utilize 2D keypoints predicted by CPN for both training and testing phases. Finally,
the horizontal flip augmentation is applied at train and test time, following previous works

[2, 15, 25].

4.5 Roadmap of Experiments

We conducted six experiments in this thesis:

* Bone Length Prediction
We compare the results on both the GRU model and the Bi-GRU model with random

and synthetic augmentations. We compare our best results to previous works.

* Bone Length Adjustment
We apply the adjustment to several existing lifting models using bone lengths pre-
dicted by our GRU model and Bi-GRU model. We compare the results before and

after the adjustment.

* Fine-tuning
We report two different settings: fine-tune the lifting model and fine-tune the entire

model. We compare the results before and after fine-tuning.

* Inference Speed

We test the inference speed in real-time processing and compare the results of our
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GRU model to previous works.

* Abaltion Study

We test our model with different settings and compare the results.
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Chapter 5 Results

In this chapter, we discuss the results for the bone length prediction model in Section
5.1, the bone length adjustment in Section 5.2, and the fine-tuning in Section 5.3. We
then present the inference speed of our bone length model and bone length adjustment in

Section 5.4. Finally, we conduct an ablation study and present the results in Section 5.5.

5.1 Bone Length Prediction Model

Figure 5.1 presents the outcomes of our Bi-GRU bone length model evaluation. Uti-
lizing synthetic bone lengths during training time augmentation yields the lowest overall
bone length error among all methods evaluated. The random uniform distribution method
fail to generate bone lengths that adhere to natural human body proportions, resulting in
poor performance. Conversely, synthetic methods demonstrate superior performance over

random methods, even when not using the mean values in the test set.

Table 5.1 shows the comparison of bone lengths. For the lifting models, We use the
off-the-shelf pretrained models to evaluate the 3D poses. The error is evaluated by de-
composing the predicted poses into bone lengths. We report the results on our device,
which might be slightly different from what they claimed. For the diffusion-based meth-
ods [16, 17, 23] that generates multiple hypotheses, we report the results with the deter-
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Figure 5.1: The average bone length error comparison across all frames of the test set in

Human3.6M. (%) involving statistics in the test set.

Table 5.1: Quantitative comparison of bone length error. Best in bold and second best
underlined. (x) including the mean values in the test set. (f) bone length model.

Bone length error

| (mm)

12.3
10.3
8.9

10.8
10.3
11.0
8.5

10.6
10.9
12.2

Pavllo et al. [15] (T=243) CVPR’19
Chen et al. [2] (T=50) (T) TCSVT’21
Chen et al. [2] (T=243) TCSVT’21
Zheng et al. [25] (T=81) ICCV’21
Lietal. [13] (T=351) CVPR’22
Zhang et al. [24] (T=243) CVPR’22
Gong et al. [7] (T=243) CVPR’23
Shan et al. [17] (T=243) ICCV’23
Peng et al. [16] (T=243) CVPR’24
Xu et al. [23] (T=243) CVPR’24
Ours, GRU (synthetic) (T=all frames) (*)()

Ours, Bi-GRU (synthetic) (T=all frames) (*)(7)

Ours, Bi-GRU (synthetic) (T=all frames) ()

7.1
7.1
8.9

ministic joint-level aggregation. Our model achieves the state-of-the-art result when not

using the mean values in the test set. Additionally, the GRU model designed for online

processing performs comparably to the Bi-GRU model. The synthetic method incorpo-

rating the test set statistics notably outperforms all other results. Given that the training

set comprises data from only five subjects, the statistics may not fully represent broader

variations, leading to significant disparities between using and not using the mean val-

ues in the test set. With a more comprehensive dataset, our approach could potentially

circumvent such limitations.
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Table 5.2: Action-wise bone length error on Human3.6M with our Bi-GRU model. Best
in bold. Unit: millimeter

Model Dir. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. | Avg

Pavlloetal . [15] | 132 119 10.7 113 122 137 113 11.7 141 162 128 111 13.1 10.4 i3 |1 1288
Chen et al. [2] 94 93 89 8.2 8.4 8.5 8.5 8.6 10.1 10.1 8.9 8.1 9 8.6 8.9 8.9
Zhengetal.[25] | 11.1 10.8 99 100 10.6 12 10.1 106 11.7 13.1 11.1 10.2 11.5 9.2 9.4 10.8
Lietal [13] 106 102 94 98 10.5 119 94 9.8 126 13.7 10.7 9.3 10.3 &2 8.2 10.3
Zhangetal. [24] | 11.4 112 102 108 10.8 12.1 10 10.8 12.1 149 112 104 11.5 8.9 8.8 11.0
Gong et al. [7] 88 82 81 8.5 8.0 9.6 7.7 8.3 94 119 8.7 7.5 8.9 7.0 72 8.5
Shaneral. [17] | 11.3 10.6 102 103 102 11.7 9.8 103 11.6 13.6 11.0  10.1 10.3 8.8 8.9 10.6
Pengetal [16] | 11.1 10.7 102 102 105 123 99 11.0 120 147 10.8  10.0 11.3 9.6 9.6 10.9
Xu et al. [23] 135 127 114 121 11.7 134 112 11.6 13.1 158 125 11.7 12.0 10.1 10.7 | 122
Ours, GRU 75 73 15 67 7.1 6.6 6.6 6.7 71 7.6 7.5 6.3 7.2 7.5 7.4 7.1
Ours, Bi-GRU 75 72 72 71 73 7 6.7 6.8 72 69 73 6.7 73 7.7 71 71

3.0
Human3.6M

White males

[
W

White females
B Black males

Black females

g
=]

STD of bone lengths (cm)
> o

<
n

0.0

Humerus/Upper arm Ulna/Forearm

Figure 5.2: Comparison between the standard deviation of real bone lengths and bone
lengths in Human3.6M.

Table 5.2 presents the action-wise comparison of bone lengths. The actions ”Walk™
and ”Walk Together” are dynamic, providing sufficient information for lifting models
to predict accurate 3D poses. For all models except for [2], we observe a significant
performance gap between these dynamic actions and others. Conversely, [2] trained a
bone length prediction network, resulting in consistent performance across all actions.
Our models exhibit similar consistent performance, demonstrating their robustness across

different types of actions.

Examining Figure 3.2, we observe that the standard deviations of certain bones, such
as spine 2, neck, head, and forearm in the Human3.6M dataset are exceptionally small. As

shown in Figure 5.2, anthropometric research [21] indicates similar standard deviations
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for lengths of the humerus (upper arm) and ulna (forearm). However, in Human3.6M,
standard deviations for the lengths of the upper arm and forearm differ significantly. Ad-
ditionally, the standard deviation of the upper arm closely matches the anthropometric
result for the humerus, while the standard deviation of the lower arm is much smaller than
the anthropometric result for the ulna. These discrepancies may arise from limitations in
the transformation process from MoCap raw data to human poses, potentially influenced
by constraints on body shape or inaccuracies in marker placement within the Human3.6M

dataset.

Even with dataset constraints, our synthetic method consistently outperforms random
methods and the lifting models. We select the model trained with synthetic bone lengths

using the mean value of the entire datset as our final model.

5.2 Bone Length Adjustment

Table 5.3 illustrates the reconstruction error of existing lifting models before and af-
ter applying our adjustment method. The results reported are tested on our device. For
the models generating multi-hypotheses [16, 17, 23], we use the deterministic joint-level
aggregation to obtain the final poses. Across all tested models, we observe consistent per-
formance improvements under both protocol 1 (MPJPE) and protocol 2 (P-MPJPE) after
adjustment with both GRU and Bi-GRU models. Our Bi-GRU model outperforms the
GRU model, showing the advantage of utilizing future information. The degree of im-
provement correlates with the bone length error inherent in the original models. Models
with larger initial bone length errors, such as Pavllo et al. [15], demonstrate significant en-
hancement, achieving a 3% reduction in Protocol 1 error with the adjustment. In contrast,
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Table 5.3: Quantitative comparison of the adjustment process on reconstruction error eval-
uated on Human3.6M under MPJPE and P-MPJPE. Best results of the same base model
are in bold.

Bone length error MPJPE | P-MPJPE

Base model | (mm) Bone length model L (mm) | | (mm)
X 46.8 36.5
Pavllo et al. [15] CVPR’19 12.3 GRU 45.6 36.1
Bi-GRU 45.2 35.8
X 442 35.0
Chen et al. [2] TCSVT’21 8.9 GRU 44.0 34.8
Bi-GRU 43.5 34.5
X 443 34.6
Zheng et al. [25] 1CCV’21 10.8 GRU 433 34.1
Bi-GRU 429 33.8
X 43.0 34.5
Lietal. [13] CVPR’22 10.3 GRU 42.5 34.0
Bi-GRU 42.2 33.7
X 40.9 32.7
Zhang et al. [24] CVPR’22 11.0 GRU 40.6 32.5
Bi-GRU 40.2 32.2
X 39.5 31.2
Gong et al. [7] CVPR’23 8.5 GRU 39.4 31.1
Bi-GRU 39.0 30.8
X 39.6 31.7
Shanetal. [17] ICCV’23 10.6 GRU 38.9 31.2
Bi-GRU 38.6 31.0
X 40.2 32.2
Pengetal.[16] CVPR24 10.9 GRU 39.9 31.9
Bi-GRU 394 31.5
X 40.2 329
Xu et al. [23] CVPR’24 12.2 GRU 40.1 32.5
Bi-GRU 39.6 32.2
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Table 5.4: Action-wise reconstruction error on Human3.6M before and after adjustment
with our Bi-GRU model. The top table shows the result under protocol 1. The bottom
table shows the result under protocol 2. Best in bold. Red for better results before the
adjustment. Unit: millimeter

Protocol 1 Dir. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. | Avg
Pavlloeral. [15] | 452 467 433 456 481 551 446 443 573 658 471 440 490 328 339 |468
Adjusted 419 452 421 443 462 535 434 421 556 641 455 423 471 32,0 327 | 452
Chen et al. [2] 415 438 398 43.1 462 525 422 418 541 607 455 416 460 314 324 | 442
Adjusted 40.0 43.0 39.6 428 459 525 414 410 531 600 449 409 452 313 317 | 435
Zhengetal [25] | 41.5 448 398 425 465 51.6 4211 420 533 60.7 455 433  46.1 31.8 322 | 443
Adjusted 389 437 389 413 450 502 411 398 522 595 441 419 443 312 315 | 429
Lietal [13] 392 43.1 40.1 409 450 512 406 413 536 604 437 411 439 29.8 30.6 |43.0
Adjusted 377 425 392 403 437 503 401 403 522 593 428 404 431 30.1 307 | 422
Zhangetal . [24] | 379 409 385 39.6 419 494 395 40.1 515 554 420 397 412 278 281 |409
Adjusted 36.2 404 37.6 385 41.6 49.1 387 383 512 542 414 388 406 281 283 | 402
Gong et al. [7] 356 395 369 382 406 476 384 385 506 532 40.8 381 40.1 269 27.1 | 395
Adjusted 349 392 362 37.6 402 471 381 375 494 523 401 377 399 279 277 |39.0
Shanetal. [17] | 375 397 362 379 41.1 477 386 381 500 524 411 390 399 272 273 |396
Adjusted 357 386 352 363 405 467 376 369 491 517 399 378 394 275 269 |38.6
Pengetal [16] | 377 399 365 378 41.7 475 383 398 524 556 412 400 399 267 274 |402
Adjusted 356 393 355 368 415 470 372 382 519 553 405 389 396 267 272 |394
Xu et al. [23] 39.6 412 363 385 41.6 453 381 385 516 544 418 402 403 27.8 282 | 402
Adjusted 37.3 407 356 377 416 451 376 378 50.7 541 407 391 401 281 283 | 39.6
Protocol 2 Dir. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. | Avg
Pavllo et al. [15] | 34.1 36.1 344 372 364 422 344 336 450 525 374 338 378 256 273 |365
Adjusted 328 352 331 362 353 42 338 331 441 520 365 331 373 250 27.0 | 358
Chen et al. [2] 33.0 353 326 354 358 404 329 325 423 497 369 325 36.1 250 263 |35.1
Adjusted 31.6 343 32.0 34.6 351 403 322 322 421 492 362 318 355 243 256 | 345
Zhengetal. [25] | 32.5 348 32,6 346 353 395 322 32 428 485 365 324 353 245 260 | 346
Adjusted 309 339 314 334 344 392 314 313 420 481 355 31.7 347 236 252 |338
Lietal. [13] 31.7 349 328 339 353 396 319 323 436 490 363 326 345 238 251 |345
Adjusted 305 34 316 329 341 392 311 319 425 486 353 319 339 232 247 | 337
Zhangetal. [24] | 31.1 333 313 321 329 387 307 312 425 446 341 307 328 219 23.0 |327
Adjusted 300 328 305 312 327 388 301 305 420 443 335 301 324 215 22,6 | 322
Gong et al. [7] 289 31.6 29.7 306 314 371 295 296 412 428 325 293 316 207 21.7 |312
Adjusted 283 31.0 29.0 300 31.0 37.0 293 293 404 425 319 289 311 207 21.6 |308
Shanetal [17] |30.7 32.6 299 31.1 317 371 300 298 406 429 332 304 317 216 225 |317
Adjusted 292 316 291 299 313 37.0 291 292 401 427 325 294 311 209 217 |31.0
Pengetal [16] |30.7 327 30.1 312 321 374 302 313 421 455 337 306 317 215 227 |322
Adjusted 293 318 292 300 31.8 369 293 305 415 454 331 296 313 207 219 |315
Xu et al. [23] 322 343 307 323 333 361 301 31.6 419 453 346 319 326 225 237 |329
Adjusted 308 332 298 313 332 362 295 309 413 453 338 308 321 21.8 229 | 322
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Table 5.5: Reconstruction error on Human3.6M before and after adjustment and fine-
tuning with our Bi-GRU model fixed. The top table shows the result under protocol 1.
The bottom table shows the result under protocol 2. Best in bold. Unit: millimeter

Protocol 1 Dir. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. | Avg
Pavlloetal. [15] | 45.2 46.7 433 456 48.1 551 446 443 573 658 471 440 49.0 328 339 4638
Adjusted 419 452 4211 443 46.1 53.5 434 421 555 64.0 455 423  47.1 32.1 329 | 452
Fine-tuned 415 452 419 440 459 536 433 423 553 63.8 453 422 470 31.8 324 | 45.0
Protocol 2 Dir. Disc. [Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. | Avg
Pavlloetal. [15] | 34.1 36.1 344 372 364 422 344 336 450 525 374 338 378 256 273 | 365
Adjusted 328 351 331 362 352 420 338 331 441 520 365 330 373 250 27.0 |358
Fine-tuned 327 353 331 359 353 417 337 333 441 52.0 364 330 373 249  26.6 |35.7

models like Chen et al. [2], which exhibit smaller bone length errors due to effective bone
length prediction, show more modest improvements of around 1% under Protocol 1. Our
adjustment effectively rectifies pose errors for all models under Protocol 2, which under-
goes rigid alignment like scaling. This indicates that our predicted bone lengths possess

better body proportions.

Table 5.4 presents the action-wise comparison. Our adjustment consistently improves
all models across all actions. For the actions ”Walk” and ”Walk Together”, we observe a
decrease in performance for several models [7, 13, 17,23, 24]. As discussed in Section 5.1,
these models can predict accurate poses for dynamic actions. However, the MPJPE only
measures the error in joint positions. If our model can predict bone lengths more accurately
than these models, the MPJPE may still be larger due to errors in bone directions. The
improvement under protocol 2 (P-MPJPE) supports our assumption and demonstrates that

our model achieves better body proportions.

5.3 Fine-tuning

Table 5.5 details the results of our fine-tuning process with the bone length model
fixed. We select Pavllo et al. [15] as the target lifting model and fine-tune it. We fo-
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cus on comparing the result after adjustment and the result after fine-tuning. While the
lifting model already performs well, fine-tuning demonstrates incremental improvements,
particularly noticeable in dynamic actions like ”Walk” (0.3 mm) and ”Walk Together”
(0.5 mm). This highlights the effectiveness of leveraging bone length cues to refine the

model’s predictions.

MPJPE (mm)

(a) The MPJPE on the test set

16 147.5

147.0

5 1465

Bone length error (mm)
Bone direction error

146.0

4 6 10 12 14 2 4 6 10 12 14

8 8
Epoch Epoch

(b) The bone length error on the test set (c) The bone direction error on the test set

Figure 5.3: Training curves of fine-tuning the entire model using model-predicted key-
points as input.

Figure 5.3 illustrates the training curves for fine-tuning the entire model using model-
predicted keypoints. Initially, the model’s MPJPE is 46.5 mm. However, performance
deteriorates immediately after a single epoch, with the MPJPE increasing to 47.9 mm, a
3% rise. After a few epochs, overfitting becomes apparent. We observe a rapid gain on
the bone length error, while the bone direction error slightly decreases. As discussed in
Section 3.4, the bone length model may be affected by erroneous bone directions. Flipping
ambiguity is observed in predicted poses in both the training and test sets, leading to the

bone length model’s failure.
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Figure 5.4: Training curves of the bone length model with and without data augmentation.
(a) synthetic bone lengths using the mean values in the test set.

Additionally, the bone length model is more likely to overfit since the non-augmented
data used for predicting final poses accounts for half of the inputs to the bone length model.
As shown in Figure 5.4, the bone length model does not overfit when data augmentation is
applied, while it overfits after several epochs when data augmentation is not applied. This
indicates the effectiveness of data augmentation in preventing overfitting and improving

the robustness of the model.

To sum up, the model overfits when fine-tuning the bone length model due to two
main reasons. First, the predicted bone directions misguide the length model. Second, the

non-augmented data used for fine-tuning the length model exacerbates this issue.

5.4 Inference Speed

In Table 5.6, we evaluate the inference efficiency across three scenarios: (1) the
lifting models alone, (2) the lifting models with our adjustment process, and (3) the bone

length models.

We measure the frames per second (FPS) for these models during real-time online
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Table 5.6: Comparison on Parameters, frame per second (FPS), and MPJPE. The evalua-
tion is performed without test-time augmentation.

Model Frames | Parameters (M) | FPS | MPJPE (mm)
Pavllo et al. [15] 243 16.95 958 46.8
Chen et al. [2] 243 59.18 197 44.2
Zheng et al. [25] 81 9.60 379 443
Pavllo et al. [15] (with adjustment) 243 19.34 435 45.6
Chen et al. [2] (with adjustment) 243 61.57 154 44.0
Zheng et al. [25] (with adjustment) 81 11.99 252 43.3
Chen et al. [2] (bone length model) - 8.56 715 -

Ours, GRU model - 2.39 2097 -

processing, where each model predicts a single frame at a time. The horizontal flip aug-
mentation is not applied in the evaluation. We repeat the inference step 10,000 times,
simulating a test on a 10,000-frame video, using a single GeForce GTX 3060 Ti GPU.
As our Bi-GRU model is unsuitable for online processing, we test using our GRU model
instead. After applying our adjustment process, the MPJPE loss improves significantly
with minimal overhead in model size and computation time. Although [15] with adjust-
ment runs at half the FPS compared to without adjustment, it remains faster than the other
models listed. Additionally, the complete human pose estimation includes 2D keypoint
detection and 2D-to-3D lifting. The FPS of most 2D keypoint detection models is lower

than 100. Thus our approach will not be the bottleneck.

For the bone length model, our approach updates bone length values faster than [2].
Our model requires only the input of the new frame at each step, as past information is
stored in the hidden state, whereas [2] needs to randomly select 50 frames from previous
inputs to predict bone lengths. The FPS is limited by our adjustment process that we

decompose poses into bone directions and reconstruct poses with inferred bone lengths.

In summary, our adjustment and fine-tuning methodologies enhance the robustness

and accuracy of existing 3D lifting models, demonstrating their efficacy in improving
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Table 5.7: Abaltion study on different architecture parameters in the bone length prediction
model. Best in bold.

Model | Layer | Number of units | Bidirectional | Length error (mm) | MPJPE (mm) | P-MPJPE (mm)
GRU 1 1 X 7.9 46.0 36.6
GRU 2 1 X 8.0 45.9 36.6
GRU 3 1 X 7.7 459 36.7
GRU 1 2 X 7.4 45.8 36.1
GRU 1 3 X 7.5 46.3 36.3
GRU 1 1 4 7.1 45.2 35.8
GRU 2 1 v 7.4 454 359
GRU 3 1 v 7.6 46.1 36.3
GRU 1 2 4 7.1 45.5 36.6
GRU 1 3 v 6.7 45.9 36.5

LSTM 1 1 4 7.1 455 35.8

pose estimation across different evaluation protocols and dynamic scenarios. In real-time
online processing, our adjustments achieve competitive results with minimal efficiency

overhead.

5.5 Ablation Study

We perform extensive ablation experiments on Human3.6M under bone length error,
protocol 1 (MPJPE), and protocol 2 (P-MPJPE). We use the prediction of [15] and apply
the bone length adjustment on the poses. All the errors are evaluated on these adjusted

poses.

We conduct the ablation study on the bone length model, fine-tuning, and inference
process. The results are presented in Section 5.5.1, Section 5.5.2, and Section 5.5.3, re-

spectively.

5.5.1 Bone Length Model

We compare different model architectures for the bone length prediction model. For

data augmentation, we use synthetic bone lengths aligned with the mean values of both
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Table 5.8: Abaltion study on the bone length model. MPJPE is applied as a loss function
in all cases.

Bone length model | Bone length loss | Bone direction loss | MPJPE (mm) | P-MPJPE (mm)
X X X 46.8 36.5
X 4 X 475 37.2
X X v 48 37.1
v X v 45.0 35.7

the training set and test set of Human3.6M. We apply GRU and LSTM as the RNN units.
The number of layers determines how many layers are in a single unit, while the number
of units indicates how many units are in the model. For example, there is one unit with a
single layer in Figure 3.3 (a), and there are two units with a single layer in Figure 3.3 (b).

The hidden states of the last layer are concatenated and input to the regression head.

The results in Table 5.7 demonstrate that the best performance is achieved using
bidirectional GRU units, highlighting the importance of leveraging future information.
Although the model with three Bi-GRU units achieves the lowest bone length error, it
does not perform well in bone length adjustment. We observe that models with higher
complexity tend to have worse performance in bone length adjustment. Notably, the best
GRU model has the same size as the best Bi-GRU model (a single Bi-GRU is equivalent
to two GRUs). Moreover, the performance is similar between GRU and LSTM. Given the

lower computational complexity of GRU, we decided to use GRU instead of LSTM.

5.5.2 Fine-tuning

In our work, we fine-tune the lifting model [15] with bone length information. We
compare to the result of fine-tuning the same lifting model without the bone length pre-
diction model. For not using the bone length model, we apply the loss function directly to
poses predicted by the lifting model. The loss including bone length loss, bone direction
loss, and MPJPE.
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Figure 5.5: Comparison of using different input sequence lengths in our GRU model on
the test set of Human3.6M.

The results in Table 5.8 illustrate the impact of incorporating our bone length pre-
diction model. Interestingly, the model performs worse when fine-tuning with either the
bone length loss or the bone direction loss. Since no data augmentation is applied, the
bone length loss does not contribute much additional information. Regarding the bone
direction loss, although the MPJPE is higher compared to using the bone length loss, the
P-MPJPE is improved. This discrepancy suggests that the model may prioritize learning
bone directions over accurately predicting joint positions. After incorporating our bone
length model, we observe a significant improvement in the results. This demonstrates the

efficacy of our approach in enhancing 3D human pose estimation.

5.5.3 Inference

In real-world applications, human pose estimation is often used for online processing.

Since the bone lengths of the subject remain constant throughout the video, continuous up-
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dates of bone lengths are unnecessary. Additionally, continuously updating bone lengths
can compromise their consistency. Therefore, it is preferable to predict bone lengths us-
ing a short sequence and then stop updating them. This approach ensures that the bone
lengths remain consistent throughout the video. To evaluate the efficiency of our model in
predicting precise bone lengths, we tested it by starting from the beginning of the videos
and updating the bone lengths with our GRU model. These predicted bone lengths were
then used to adjust the poses predicted by [15]. The results, shown in Figure 5.5, indicate
that the errors rapidly converge in fewer than 10 frames. This demonstrates that our model
can predict precise bone lengths using a short input sequence, thereby imposing minimal

efficiency overhead when applied to existing models.
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Chapter 6 Conclusions and Future

Work

In this thesis, we introduced a novel approach for enhancing 3D human pose esti-
mation by integrating precise bone length prediction and adjustment methods. For bone
length prediction, we developed a GRU-based model along with a novel data augmenta-

tion technique involving synthetic bone lengths.

In this section, we conclude our findings in Section 6.1 and outline future work in

Section 6.2.

6.1 Conclusions

The main observations are listed as follows:

* In Section 5.1, the comparison between different data augmentation approaches
shows that the synthetic bone lengths effectively improve the performance of our

bone length prediction model.

* The comparison between bone length errors in Section 5.1 reveals that both our
GRU model and Bi-GRU model, when using synthetic data for augmentation, achieve
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the lowest bone length errors on the Human3.6M dataset. Additionally, our Bi-
GRU model attains state-of-the-art performance even without relying on ground

truth mean values of bone lengths.

* In Section 5.1, we observe that the Human3.6M dataset has inaccuracies in the joint

positions of the wrists, indicating that they are not accurately located.

* For the experiments in Section 5.2, our bone length adjustment technique refines the
poses generated by existing 2D-to-3D lifting models, which significantly reduces
MPJPE and P-MPIJPE errors, particularly in models with higher initial bone length
errors. This demonstrates that our model effectively learns better body proportions

from synthetic bone lengths.

* The results in Section 5.3 indicate that our fine-tuning process further improves pose
estimation accuracy, especially for dynamic actions. However, when we attempt to

fine-tune the bone length model simultaneously, the model overfits immediately.

* In the experiments in Section 5.4, our GRU-model achieves high FPS in real-time

processing, illustrating the small overhead of our adjustment process.

» The ablation study on inference process in Section 5.5 shows that our bone length

prediction model can achieve high precision within 10 frames.

Overall, our approach effectively enhances the anatomical accuracy of 3D human
pose predictions, demonstrating significant improvements in error metrics and robustness
across various models and activities.
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6.2 Future Work

We observe several limitations in our work that we are unable to overcome in a short

time. Therefore, we will address them as future work.

* To improve the quality of Human3.6M, we can create a new MoCap dataset with
a wider variety of bone lengths and a consistent definition of joint positions across

different subjects.

* We can fine-tune more lifting models and test our methods on different Mocap

datasets to show the generality of our methods.

* We failed in fine-tuning the entire model since flipping ambiguity in bone directions
misguide the bone length model. Solving flipping ambiguity not only improves
the performance of lifting models, but also provides a chance to fine-tune flipping

models and our bone length model simultaneously.
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