Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94356
Title: 基於語意與編碼簿的人臉影像修復
Semantic and Codebook Dual Priors for Blind Face Restoration
Authors: 魏湧致
Yung-Chih Wei
Advisor: 莊永裕
Yung-Yu Chuang
Keyword: 電腦視覺,人臉修復,語意先驗,編碼簿先驗,
Computer Vision,Face Restoration,Semantic Prior,Codebook Prior,
Publication Year : 2024
Degree: 碩士
Abstract: 本篇論文致力於解決影像重建中的盲人臉修復問題,在真實世界的影像拍攝與應用中,影像常因低解析度、雜訊、模糊和壓縮失真等未知因素而受損,因此在盲人臉修復的任務中,我們希望能夠訓練一個影像修復模型,在只有退化影像當作輸入的情況下來復原出高品質的人臉影像。在這篇論文中,我們提出了一個名為「語意與編碼簿的人臉影像修復」(DPFR)新框架,該框架整合了幾何先驗和生成先驗,以有效地進行盲人臉修復。為了結合前述兩者先驗,我們將人臉語意遮罩當作訓練資料的一部份來訓練離散編碼簿,並且透過語意感知轉換模組(Semantic-Aware Conversion Module, SAC Module)將語意資訊融合到主解碼器中。最終實驗結果顯示,藉由同時採用語意及編碼簿先驗,我們的方法測試在合成以及真實世界的資料集上,相較於既有的方法在量化指標與視覺比較上都有更好的表現。
This thesis addresses the problem of blind face restoration in image reconstruction. In real-world image photography and corresponding applications, images are often degraded due to low resolution, noise, blur, compression artifacts, and other unknown factors. Therefore, the goal of blind face restoration is to train an image restoration model that can recover high-quality facial images using only the degraded images as input. In this thesis, we propose a novel framework named "Dual Prior Face Restoration" (DPFR), which integrates geometric and generative priors to perform blind face restoration effectively. To combine these two types of priors, we incorporate face semantic masks to the inputs to train a discrete codebook and use a Semantic-Aware Conversion (SAC) module to integrate semantic information into the main decoder. The final experimental results demonstrate that by leveraging the advantages of semantic and codebook prior, our method performs competitively against existing methods in both quantitative metrics and visual comparisons on both synthetic and real-world datasets.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94356
DOI: 10.6342/NTU202401077
Fulltext Rights: 同意授權(限校園內公開)
Appears in Collections:資訊網路與多媒體研究所

Files in This Item:
File SizeFormat 
ntu-112-2.pdf
Access limited in NTU ip range
21.06 MBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved