請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94356完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 莊永裕 | zh_TW |
| dc.contributor.advisor | Yung-Yu Chuang | en |
| dc.contributor.author | 魏湧致 | zh_TW |
| dc.contributor.author | Yung-Chih Wei | en |
| dc.date.accessioned | 2024-08-15T17:01:10Z | - |
| dc.date.available | 2024-08-16 | - |
| dc.date.copyright | 2024-08-15 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-01 | - |
| dc.identifier.citation | [1] Y. Bengio, N. Léonard, and A. Courville. Estimating or propagating gradients through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.
[2] K. C. Chan, X. Wang, X. Xu, J. Gu, and C. C. Loy. Glean: Generative latent bank for largefactor image superresolution. In CVPR, 2021. [3] C. Chen, X. Li, L. Yang, X. Lin, L. Zhang, and K.Y. K. Wong. Progressive semantic-aware style transformation for blind face restoration. In CVPR, 2021. [4] Y. Chen, Y. Tai, X. Liu, C. Shen, and J. Yang. Fsrnet: Endtoend learning face superresolution with facial priors. In CVPR, 2018. [5] J. Deng, J. Guo, N. Xue, and S. Zafeiriou. Arcface: Additive angular margin loss for deep face recognition. In CVPR, 2019. [6] B. Dogan, S. Gu, and R. Timofte. Exemplar guided face image superresolution without facial landmarks. In CVPR Workshops, 2019. [7] P. Esser, R. Rombach, and B. Ommer. Taming transformers for high-resolution image synthesis. In CVPR, 2021. [8] I. Goodfellow, J. PougetAbadie, M. Mirza, B. Xu, D. WardeFarley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. NeurIPS, 2014. [9] Y. Gu, X. Wang, L. Xie, C. Dong, G. Li, Y. Shan, and M.M. Cheng. Vqfr: Blind face restoration with vector-quantized dictionary and parallel decoder. In ECCV, 2022. [10] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. Gans trained by a two timescale update rule converge to a local nash equilibrium. NeurIPS, 2017. [11] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. NeurIPS, 2020. [12] G. B. Huang, M. Mattar, T. Berg, and E. LearnedMiller. Labeled faces in the wild: A database forstudying face recognition in unconstrained environments. In Workshop on faces in’Real-Life’Images: detection, alignment, and recognition, 2008. [13] R. Kalarot, T. Li, and F. Porikli. Component attention guided face super-resolution network: Cagface. In WACV, 2020. [14] T. Karras, T. Aila, S. Laine, and J. Lehtinen. Progressive growing of gans for improved quality, stability, and variation. ICLR, 2018. [15] T. Karras, S. Laine, and T. Aila. A stylebased generator architecture for generative adversarial networks. In CVPR, 2019. [16] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila. Analyzing and improving the image quality of stylegan. In CVPR, 2020. [17] D. Kim, M. Kim, G. Kwon, and D.S. Kim. Progressive face superresolution via attention to facial landmark. arXiv preprint arXiv:1908.08239, 2019. [18] O. Kupyn, V. Budzan, M. Mykhailych, D. Mishkin, and J. Matas. Deblurgan: Blind motion deblurring using conditional adversarial networks. In CVPR, 2018. [19] W.S. Lai, Y. Shih, L.C. Chu, X. Wu, S.F. Tsai, M. Krainin, D. Sun, and C.K. Liang. Face deblurring using dual camera fusion on mobile phones. ACM TOG, 2022. [20] C.H. Lee, Z. Liu, L. Wu, and P. Luo. Maskgan: Towards diverse and interactive facial image manipulation. In CVPR, 2020. [21] X. Li, W. Li, D. Ren, H. Zhang, M. Wang, and W. Zuo. Enhanced blind face restoration with multiexemplar images and adaptive spatial feature fusion. In CVPR, 2020. [22] X. Li, M. Liu, Y. Ye, W. Zuo, L. Lin, and R. Yang. Learning warped guidance for blind face restoration. In ECCV, 2018. [23] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. ICLR, 2019. [24] C. Ma, Z. Jiang, Y. Rao, J. Lu, and J. Zhou. Deep face super-resolution with iterative collaboration between attentive recovery and landmark estimation. In CVPR, 2020. [25] A. Mittal, R. Soundararajan, and A. C. Bovik. Making a“completely blind"image quality analyzer. IEEE Signal processing letters, 2012. [26] T. Park, M.Y. Liu, T.C. Wang, and J.Y. Zhu. Semantic image synthesis with spatially-adaptive normalization. In CVPR, 2019. [27] A. Razavi, A. Van den Oord, and O. Vinyals. Generating diverse highfidelity images with vq-vae-2. NeurIPS, 2019. [28] C. Schuhmann, R. Vencu, R. Beaumont, R. Kaczmarczyk, C. Mullis, A. Katta, T. Coombes, J. Jitsev, and A. Komatsuzaki. Laion400m: Open dataset of clip-filtered 400 million image-text pairs. Data Centric AI NeurIPS Workshop, 2021. [29] Z. Shen, W.S. Lai, T. Xu, J. Kautz, and M.H. Yang. Deep semantic face deblurring. In CVPR, 2018. [30] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. ICLR, 2015. [31] J. Song, C. Meng, and S. Ermon. Denoising diffusion implicit models. ICLR, 2021. [32] Y.J. Tsai, Y.L. Liu, L. Qi, K. C. Chan, and M.H. Yang. Dual associated encoder for face restoration. In ICLR, 2024. [33] A. Van Den Oord, O. Vinyals, et al. Neural discrete representation learning. NeurIPS, 2017. [34] X. Wang, L. Bo, and L. Fuxin. Adaptive wing loss for robust face alignment via heatmap regression. In ICCV, 2019. [35] X. Wang, Y. Li, H. Zhang, and Y. Shan. Towards realworld blind face restoration with generative facial prior. In CVPR, 2021. [36] Z. Wang, J. Zhang, R. Chen, W. Wang, and P. Luo. Restoreformer: Highquality blind face restoration from undegraded keyvalue pairs. In CVPR, 2022. [37] Z. Wang, Z. Zhang, X. Zhang, H. Zheng, M. Zhou, Y. Zhang, and Y. Wang. Dr2: Diffusionbased robust degradation remover for blind face restoration. In CVPR, 2023. [38] L. Yang, S. Wang, S. Ma, W. Gao, C. Liu, P. Wang, and P. Ren. Hifacegan: Face renovation via collaborative suppression and replenishment. In ACM MM, 2020. [39] S. Yang, P. Luo, C.C. Loy, and X. Tang. Wider face: A face detection benchmark. In CVPR, 2016. [40] T. Yang, P. Ren, X. Xie, and L. Zhang. Gan prior embedded network for blind face restoration in the wild. In CVPR, 2021. [41] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang. The unreasonable effectiveness of deep features as a perceptual metric. In CVPR, 2018. [42] Y. Zheng, H. Yang, T. Zhang, J. Bao, D. Chen, Y. Huang, L. Yuan, D. Chen, M. Zeng, and F. Wen. General facial representation learning in a visual-linguistic manner. In CVPR, 2022. [43] S. Zhou, K. C. Chan, C. Li, and C. C. Loy. Towards robust blind face restoration with codebook lookup transformer. In NeurIPS, 2022. [44] Y. Zongsheng. Difface: Blind face restoration with diffused error contraction. arXiv preprint arXiv:2212.06512, 2022. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94356 | - |
| dc.description.abstract | 本篇論文致力於解決影像重建中的盲人臉修復問題,在真實世界的影像拍攝與應用中,影像常因低解析度、雜訊、模糊和壓縮失真等未知因素而受損,因此在盲人臉修復的任務中,我們希望能夠訓練一個影像修復模型,在只有退化影像當作輸入的情況下來復原出高品質的人臉影像。在這篇論文中,我們提出了一個名為「語意與編碼簿的人臉影像修復」(DPFR)新框架,該框架整合了幾何先驗和生成先驗,以有效地進行盲人臉修復。為了結合前述兩者先驗,我們將人臉語意遮罩當作訓練資料的一部份來訓練離散編碼簿,並且透過語意感知轉換模組(Semantic-Aware Conversion Module, SAC Module)將語意資訊融合到主解碼器中。最終實驗結果顯示,藉由同時採用語意及編碼簿先驗,我們的方法測試在合成以及真實世界的資料集上,相較於既有的方法在量化指標與視覺比較上都有更好的表現。 | zh_TW |
| dc.description.abstract | This thesis addresses the problem of blind face restoration in image reconstruction. In real-world image photography and corresponding applications, images are often degraded due to low resolution, noise, blur, compression artifacts, and other unknown factors. Therefore, the goal of blind face restoration is to train an image restoration model that can recover high-quality facial images using only the degraded images as input. In this thesis, we propose a novel framework named "Dual Prior Face Restoration" (DPFR), which integrates geometric and generative priors to perform blind face restoration effectively. To combine these two types of priors, we incorporate face semantic masks to the inputs to train a discrete codebook and use a Semantic-Aware Conversion (SAC) module to integrate semantic information into the main decoder. The final experimental results demonstrate that by leveraging the advantages of semantic and codebook prior, our method performs competitively against existing methods in both quantitative metrics and visual comparisons on both synthetic and real-world datasets. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T17:01:10Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-15T17:01:10Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i
Acknowledgements i 摘要 ii Abstract iii Contents v List of Figures vii List of Tables ix Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Contribution 3 Chapter 2 Related Work 4 2.1 Blind Face Restoration 4 2.2 Semantic Prior 6 2.3 Vector Quantized Codebook Prior 7 Chapter 3 Methodology 9 3.1 Codebook Learning Stage 10 3.1.1 Codebook Learning 10 3.1.2 Training Objective 11 3.2 Restoration Learning Stage 12 3.2.1 Feature Extraction and Quantization 12 3.2.2 Parallel Decoder 13 3.2.3 SemanticAware Conversion Module 14 3.2.4 Image Reconstruction 14 3.2.5 Training Objective 15 Chapter 4 Experiments 16 4.1 Experimental Setting 16 4.1.1 Implementation Details 16 4.1.2 Training Dataset 17 4.1.3 Testing Datasets 18 4.1.4 Evaluation Metrics 18 4.2 Experimental results 19 4.2.1 Quantitative Comparisons 19 4.2.2 Qualitative Comparisons 20 4.3 Ablation Study 27 Chapter 5 Conclusion 30 References 31 | - |
| dc.language.iso | en | - |
| dc.subject | 電腦視覺 | zh_TW |
| dc.subject | 人臉修復 | zh_TW |
| dc.subject | 語意先驗 | zh_TW |
| dc.subject | 編碼簿先驗 | zh_TW |
| dc.subject | Face Restoration | en |
| dc.subject | Computer Vision | en |
| dc.subject | Codebook Prior | en |
| dc.subject | Semantic Prior | en |
| dc.title | 基於語意與編碼簿的人臉影像修復 | zh_TW |
| dc.title | Semantic and Codebook Dual Priors for Blind Face Restoration | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 吳昱霆;林宏祥 | zh_TW |
| dc.contributor.oralexamcommittee | Yu-Ting Wu;Hong-Shiang Lin | en |
| dc.subject.keyword | 電腦視覺,人臉修復,語意先驗,編碼簿先驗, | zh_TW |
| dc.subject.keyword | Computer Vision,Face Restoration,Semantic Prior,Codebook Prior, | en |
| dc.relation.page | 35 | - |
| dc.identifier.doi | 10.6342/NTU202401077 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-03 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 資訊網路與多媒體研究所 | - |
| 顯示於系所單位: | 資訊網路與多媒體研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 21.06 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
