Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94356
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor莊永裕zh_TW
dc.contributor.advisorYung-Yu Chuangen
dc.contributor.author魏湧致zh_TW
dc.contributor.authorYung-Chih Weien
dc.date.accessioned2024-08-15T17:01:10Z-
dc.date.available2024-08-16-
dc.date.copyright2024-08-15-
dc.date.issued2024-
dc.date.submitted2024-08-01-
dc.identifier.citation[1] Y. Bengio, N. Léonard, and A. Courville. Estimating or propagating gradients through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.
[2] K. C. Chan, X. Wang, X. Xu, J. Gu, and C. C. Loy. Glean: Generative latent bank for large­factor image super­resolution. In CVPR, 2021.
[3] C. Chen, X. Li, L. Yang, X. Lin, L. Zhang, and K.­Y. K. Wong. Progressive semantic-aware style transformation for blind face restoration. In CVPR, 2021.
[4] Y. Chen, Y. Tai, X. Liu, C. Shen, and J. Yang. Fsrnet: End­to­end learning face super­resolution with facial priors. In CVPR, 2018.
[5] J. Deng, J. Guo, N. Xue, and S. Zafeiriou. Arcface: Additive angular margin loss for deep face recognition. In CVPR, 2019.
[6] B. Dogan, S. Gu, and R. Timofte. Exemplar guided face image super­resolution without facial landmarks. In CVPR Workshops, 2019.
[7] P. Esser, R. Rombach, and B. Ommer. Taming transformers for high-­resolution image synthesis. In CVPR, 2021.
[8] I. Goodfellow, J. Pouget­Abadie, M. Mirza, B. Xu, D. Warde­Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. NeurIPS, 2014.
[9] Y. Gu, X. Wang, L. Xie, C. Dong, G. Li, Y. Shan, and M.­M. Cheng. Vqfr: Blind face restoration with vector-­quantized dictionary and parallel decoder. In ECCV, 2022.
[10] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. Gans trained by a two time­scale update rule converge to a local nash equilibrium. NeurIPS, 2017.
[11] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. NeurIPS, 2020.
[12] G. B. Huang, M. Mattar, T. Berg, and E. Learned­Miller. Labeled faces in the wild: A database forstudying face recognition in unconstrained environments. In Workshop on faces in’Real-­Life’Images: detection, alignment, and recognition, 2008.
[13] R. Kalarot, T. Li, and F. Porikli. Component attention guided face super-­resolution network: Cagface. In WACV, 2020.
[14] T. Karras, T. Aila, S. Laine, and J. Lehtinen. Progressive growing of gans for improved quality, stability, and variation. ICLR, 2018.
[15] T. Karras, S. Laine, and T. Aila. A style­based generator architecture for generative adversarial networks. In CVPR, 2019.
[16] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila. Analyzing and improving the image quality of stylegan. In CVPR, 2020.
[17] D. Kim, M. Kim, G. Kwon, and D.­S. Kim. Progressive face super­resolution via attention to facial landmark. arXiv preprint arXiv:1908.08239, 2019.
[18] O. Kupyn, V. Budzan, M. Mykhailych, D. Mishkin, and J. Matas. Deblurgan: Blind motion deblurring using conditional adversarial networks. In CVPR, 2018.
[19] W.­S. Lai, Y. Shih, L.­C. Chu, X. Wu, S.­F. Tsai, M. Krainin, D. Sun, and C.­K. Liang. Face deblurring using dual camera fusion on mobile phones. ACM TOG, 2022.
[20] C.­H. Lee, Z. Liu, L. Wu, and P. Luo. Maskgan: Towards diverse and interactive facial image manipulation. In CVPR, 2020.
[21] X. Li, W. Li, D. Ren, H. Zhang, M. Wang, and W. Zuo. Enhanced blind face restoration with multi­exemplar images and adaptive spatial feature fusion. In CVPR, 2020.
[22] X. Li, M. Liu, Y. Ye, W. Zuo, L. Lin, and R. Yang. Learning warped guidance for blind face restoration. In ECCV, 2018.
[23] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. ICLR, 2019.
[24] C. Ma, Z. Jiang, Y. Rao, J. Lu, and J. Zhou. Deep face super­-resolution with iterative collaboration between attentive recovery and landmark estimation. In CVPR, 2020.
[25] A. Mittal, R. Soundararajan, and A. C. Bovik. Making a“completely blind"image quality analyzer. IEEE Signal processing letters, 2012.
[26] T. Park, M.­Y. Liu, T.­C. Wang, and J.­Y. Zhu. Semantic image synthesis with spatially-­adaptive normalization. In CVPR, 2019.
[27] A. Razavi, A. Van den Oord, and O. Vinyals. Generating diverse high­fidelity images with vq-­vae-­2. NeurIPS, 2019.
[28] C. Schuhmann, R. Vencu, R. Beaumont, R. Kaczmarczyk, C. Mullis, A. Katta, T. Coombes, J. Jitsev, and A. Komatsuzaki. Laion­400m: Open dataset of clip-filtered 400 million image-­text pairs. Data Centric AI NeurIPS Workshop, 2021.
[29] Z. Shen, W.­S. Lai, T. Xu, J. Kautz, and M.­H. Yang. Deep semantic face deblurring. In CVPR, 2018.
[30] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-­scale image recognition. ICLR, 2015.
[31] J. Song, C. Meng, and S. Ermon. Denoising diffusion implicit models. ICLR, 2021.
[32] Y.­J. Tsai, Y.­L. Liu, L. Qi, K. C. Chan, and M.­H. Yang. Dual associated encoder for face restoration. In ICLR, 2024.
[33] A. Van Den Oord, O. Vinyals, et al. Neural discrete representation learning. NeurIPS, 2017.
[34] X. Wang, L. Bo, and L. Fuxin. Adaptive wing loss for robust face alignment via heatmap regression. In ICCV, 2019.
[35] X. Wang, Y. Li, H. Zhang, and Y. Shan. Towards real­world blind face restoration with generative facial prior. In CVPR, 2021.
[36] Z. Wang, J. Zhang, R. Chen, W. Wang, and P. Luo. Restoreformer: High­quality blind face restoration from undegraded key­value pairs. In CVPR, 2022.
[37] Z. Wang, Z. Zhang, X. Zhang, H. Zheng, M. Zhou, Y. Zhang, and Y. Wang. Dr2: Diffusion­based robust degradation remover for blind face restoration. In CVPR, 2023.
[38] L. Yang, S. Wang, S. Ma, W. Gao, C. Liu, P. Wang, and P. Ren. Hifacegan: Face renovation via collaborative suppression and replenishment. In ACM MM, 2020.
[39] S. Yang, P. Luo, C.­C. Loy, and X. Tang. Wider face: A face detection benchmark. In CVPR, 2016.
[40] T. Yang, P. Ren, X. Xie, and L. Zhang. Gan prior embedded network for blind face restoration in the wild. In CVPR, 2021.
[41] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang. The unreasonable effectiveness of deep features as a perceptual metric. In CVPR, 2018.
[42] Y. Zheng, H. Yang, T. Zhang, J. Bao, D. Chen, Y. Huang, L. Yuan, D. Chen, M. Zeng, and F. Wen. General facial representation learning in a visual­-linguistic manner. In CVPR, 2022.
[43] S. Zhou, K. C. Chan, C. Li, and C. C. Loy. Towards robust blind face restoration with codebook lookup transformer. In NeurIPS, 2022.
[44] Y. Zongsheng. Difface: Blind face restoration with diffused error contraction. arXiv preprint arXiv:2212.06512, 2022.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94356-
dc.description.abstract本篇論文致力於解決影像重建中的盲人臉修復問題,在真實世界的影像拍攝與應用中,影像常因低解析度、雜訊、模糊和壓縮失真等未知因素而受損,因此在盲人臉修復的任務中,我們希望能夠訓練一個影像修復模型,在只有退化影像當作輸入的情況下來復原出高品質的人臉影像。在這篇論文中,我們提出了一個名為「語意與編碼簿的人臉影像修復」(DPFR)新框架,該框架整合了幾何先驗和生成先驗,以有效地進行盲人臉修復。為了結合前述兩者先驗,我們將人臉語意遮罩當作訓練資料的一部份來訓練離散編碼簿,並且透過語意感知轉換模組(Semantic-Aware Conversion Module, SAC Module)將語意資訊融合到主解碼器中。最終實驗結果顯示,藉由同時採用語意及編碼簿先驗,我們的方法測試在合成以及真實世界的資料集上,相較於既有的方法在量化指標與視覺比較上都有更好的表現。zh_TW
dc.description.abstractThis thesis addresses the problem of blind face restoration in image reconstruction. In real-world image photography and corresponding applications, images are often degraded due to low resolution, noise, blur, compression artifacts, and other unknown factors. Therefore, the goal of blind face restoration is to train an image restoration model that can recover high-quality facial images using only the degraded images as input. In this thesis, we propose a novel framework named "Dual Prior Face Restoration" (DPFR), which integrates geometric and generative priors to perform blind face restoration effectively. To combine these two types of priors, we incorporate face semantic masks to the inputs to train a discrete codebook and use a Semantic-Aware Conversion (SAC) module to integrate semantic information into the main decoder. The final experimental results demonstrate that by leveraging the advantages of semantic and codebook prior, our method performs competitively against existing methods in both quantitative metrics and visual comparisons on both synthetic and real-world datasets.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T17:01:10Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-15T17:01:10Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i
Acknowledgements i
摘要 ii
Abstract iii
Contents v
List of Figures vii
List of Tables ix
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Contribution 3
Chapter 2 Related Work 4
2.1 Blind Face Restoration 4
2.2 Semantic Prior 6
2.3 Vector Quantized Codebook Prior 7
Chapter 3 Methodology 9
3.1 Codebook Learning Stage 10
3.1.1 Codebook Learning 10
3.1.2 Training Objective 11
3.2 Restoration Learning Stage 12
3.2.1 Feature Extraction and Quantization 12
3.2.2 Parallel Decoder 13
3.2.3 Semantic­Aware Conversion Module 14
3.2.4 Image Reconstruction 14
3.2.5 Training Objective 15
Chapter 4 Experiments 16
4.1 Experimental Setting 16
4.1.1 Implementation Details 16
4.1.2 Training Dataset 17
4.1.3 Testing Datasets 18
4.1.4 Evaluation Metrics 18
4.2 Experimental results 19
4.2.1 Quantitative Comparisons 19
4.2.2 Qualitative Comparisons 20
4.3 Ablation Study 27
Chapter 5 Conclusion 30
References 31
-
dc.language.isoen-
dc.subject電腦視覺zh_TW
dc.subject人臉修復zh_TW
dc.subject語意先驗zh_TW
dc.subject編碼簿先驗zh_TW
dc.subjectFace Restorationen
dc.subjectComputer Visionen
dc.subjectCodebook Prioren
dc.subjectSemantic Prioren
dc.title基於語意與編碼簿的人臉影像修復zh_TW
dc.titleSemantic and Codebook Dual Priors for Blind Face Restorationen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee吳昱霆;林宏祥zh_TW
dc.contributor.oralexamcommitteeYu-Ting Wu;Hong-Shiang Linen
dc.subject.keyword電腦視覺,人臉修復,語意先驗,編碼簿先驗,zh_TW
dc.subject.keywordComputer Vision,Face Restoration,Semantic Prior,Codebook Prior,en
dc.relation.page35-
dc.identifier.doi10.6342/NTU202401077-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-03-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept資訊網路與多媒體研究所-
顯示於系所單位:資訊網路與多媒體研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
21.06 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved