Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93003
Title: | 4物種 Lotka-Volterra 擴散競爭模型解的存在性與2物種行波解波速之研究 The Existence of Traveling Wave Solutions to the 4-Species Lotka-Volterra Competition Diffusion System and the Sign of the Traveling Wave Speed in the 2-Species Model |
Authors: | 王舜傑 Shun-Chieh Wang |
Advisor: | 陳俊全 Chiun-Chuan Chen |
Keyword: | 反應擴散方程,洛特卡-佛爾特拉生物競爭方程組,四物種,行波解波速,變分, Lotka-Volterra, Competition-diffusion model,Mini-Max approach,Traveling wave solution,Wave Speed,Variational formula, |
Publication Year : | 2024 |
Degree: | 博士 |
Abstract: | 這篇論文分成兩個部分。第一個部份我們將介紹4物種的生物競爭模型,包含兩原生物種以及兩外來種之生物競爭模型,並設定原生物種為彼此強競爭之關係,外來物種為弱勢族群(弱競爭)的狀態。我們將證明,在適當條件之下此模型存在非0之行波解。第二部份,我們將利用變分形式之最小最大公式,將兩強競爭物種的生物模型中,行波解之波速零值條件表示出來。此外,我們即可間接利用此公式得到行波解波速的正負號判準。 This article is divided into two parts. In the first part, we explores the question of whether coexistence can persist over time when a third and forth species, denoted as w1 and w2, invade an ecosystem which is comprised of two species u and v, within the domain R. In this scenario, u, v, w1,and w2 engage in competition with each other. Assuming that the impact of wi on u and v are very small, along with other appropriate conditions, we demonstrate that these four species can coexist in the form of a non-monotone traveling wave. Our new technique, using the method of iteration argument, Schauder’s Fixed point theory, sub- and super-solutions and the bifurcation theory, provides methods for constructing small perturbation types of non-monotonic waves. In the second part, we use a min-max variational approach to represent the sign of the traveling wave speed in the two species Lotka-Volterra system with strong competition. |
URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93003 |
DOI: | 10.6342/NTU202401563 |
Fulltext Rights: | 未授權 |
Appears in Collections: | 數學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-112-2.pdf Restricted Access | 7.09 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.