Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93003
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳俊全zh_TW
dc.contributor.advisorChiun-Chuan Chenen
dc.contributor.author王舜傑zh_TW
dc.contributor.authorShun-Chieh Wangen
dc.date.accessioned2024-07-12T16:13:41Z-
dc.date.available2024-07-13-
dc.date.copyright2024-07-12-
dc.date.issued2024-
dc.date.submitted2024-07-10-
dc.identifier.citation[1] B. S. A.J. Homburg. Homoclinic and heteroclinic bifurcations in vector fields. volume 3, pages 379–524. Handbook of dynamical systems, 2010.

[2] F. D. Alzahrani and D. N. Travelling waves in neardegenerate bistable competition models. In Math. Model. Nat. Phenom., volume 5 of 5, pages 13–35. 2010.

[3] L.-C. H. Chiun-Chuan Chen. An n-barrier maximum principle for elliptic systems arising from the study of traveling waves in reaction-diffusion systems. In DCDS-B, volume 23 of 4, pages 1503–1521. 2018.

[4] M. M. Chiun-Chuan Chen1, Li-Chang Hung and D. Ueyama. Exact travelling wave solutions of three-species competition–diffusion systems. In DCDS-B, volume 17 of 8, pages 2653–2669. 2012.

[5] L.-C. H. M. M. Chueh-Hsin Chang, Chiun-Chuan Chen and T. Ogawa. Existence and stability of non-monotone travelling wave solutions for the diffusive lotka–volterra system of three competing species. In Nonlinearity, volume 33 of 10, pages 5080–5110. IOP Publishing, 2020.

[6] C. Conley and R. Gardner. An application of the generalized morse index to travelling wave solutions of a competitive reaction-diffusion model. In Indiana Univ. Math. J., volume 33, pages 319–343. 1984.

[7] M. M. T. . P. C. Fife. Propagating fronts for competing species equations with diffusion. In Arch. Rational Mech. Anal., volume 73, pages 69–77. Springer, 1980.

[8] R. Gardner. Existence and stability of travelling wave solutions of competition models: A degree theoretic approach. In J. Differential Equations, volume 44, pages 343–364. 1982.

[9] L. Girardin. The effect of random dispersal on competitive exclusion–a review. In Math. Biosciences, volume 318, page 108271. 555, 2019.

[10] C. J. N. H. Berestycki, O. Diekmann and P. A. Zegeling. Can a species keep pace with a shifting climate? In Bull Math Biol., volume 71 of 2, pages 399–429. Spinger,2009.

[11] K. P. Hadeler and F. Rothe. Traveling fronts in nonlinear diffusion equations. In J.Math. Biol., volume 2, pages 251–263. 1975.

[12] S. Heinze and B. Schweizer. Creeping fronts in degenerate reaction-diffusion systems. In Nonlinearity, volume 18 of 6, pages 2455–2476. 2005.

[13] P. C. C. Hirsch M W and S. M. Invariant manifolds. In Lecture Notes in Mathematics,volume 583. Springer, 1977.

[14] L.-C. Hung. Exact traveling wave solutions or diffusive lotka-volterra systems of two competing species. In Japan J. Indust. Appl. Math., volume 29, pages 237–251.2012.

[15] Y.-C. L. J.-S. Guo. The sign of the wave speed for the lotka-volterra competition-diffusion system. In Commun. Pure Appl. Anal., volume 12 of 5, pages 2083–2090. 2013

[16] W.-H. F. Jia-Dong Yang. The state of taiwan’s birds 2o2o. Taiwan Endemic Species Research Institute, 2020.

[17] Y. Kan-on. Parameter dependence of propagation speed of travelling waves for competition-diffusion equations. In SIAM Journal on Mathematic Analysis, volume 26 of 2, pages 340–363. SIAM, 1995.

[18] Y. Kan-on. Existence of standing waves for competition-diffusion equations. In Japan J. Indust. Appl. Math., volume 13, page 117–133. 1996.

[19] Y. Kan-on. Fisher wave fronts for the lotka–volterra competition model with diffusion. In Nonlinear Anal., volume 28, pages 145–164. 1997.

[20] Y. Kan-on and Q. Fang. Stability of monotone travelling waves for competition-diffusion equations. In Japan J. Indust. Appl. Math., pages 343–349. Spinger, 1996.

[21] Y. Kan-on and E. Yanagida. Existence of non-constant stable equilibria in competition-diffusion equations. In Hiroshima Math. J., volume 33, pages 193–221.1993.

[22] H. Kokubu. Homoclinic and heteroclinic bifurcations of vector fields. In Japan Journal of Applied Mathematics, volume 5, pages 455–501. Springer, 1988.

[23] Y. K. L Zhou. A new proof of existence of the wave front solutions for a kind of reaction-diffusion system. In Nonlinear Evolutionary Partial Differential equations (Beijing, 1993), pages 469–482. AMS/IP Stud. Adv. Math. 3, 1997.

[24] Z. H. M. Ma and C. Ou. Speed of the traveling wave for the bistable lotka-volterra competition model. In Nonlinearity, volume 32 of 9, pages 3143–3162. 2019

[25] M. T. M. Mimura. Dynamic coexistence in a three-species competition–diffusion system. In Ecol. Complex., pages 215–232. 2014.

[26] M. M. M. Rodrigo. Exact solutions of a competition-diffusion system. volume 30, pages 257–270. Hiroshima Math.J., 2000.

[27] S.-C. W. Mao-Sheng Chang, Chiun-Chuan Chen. Propagating direction in the two species lotka-volterra competition-diffusion system. In DCDS-B, volume 28 of 12, pages 5998–6014. 2023.

[28] S. Merino. A note on the existence of travelling waves for the fisher-kolmogorov equation via the method of sub- and supersolutions. In International Conference on Differential Equations, pages 488–452. World Sci. Publ., River Edge, NJ, 1998.

[29] E. Risler. Competition between stable equilibria in reaction-diffusion systems: the influence of mobility on dominance. In ArXiv e-prints. 2017.

[30] M. Rodrigo and M. Mimura. Exact solutions of reaction-diffusion systems and nonlinear wave equations. In Japan J. Indust. Appl. Math., volume 18, pages 657–696.2001.

[31] B. S. S. Heinze and H. Schwetlick. Existence of front solutions in degenerate reaction diffusion systems. In preprint. 2004.

[32] I. Trägårdh. Entomologiska analyser av torkande träd. In Medd. Stat. Skogsförsöksanst., pages 191–216. 1927.

[33] S.-C. Wang. Traveling wave solutions of lotka-volterra diffusion competition system with 3-species. Master’s thesis, National Taiwan University, June 2018.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93003-
dc.description.abstract這篇論文分成兩個部分。第一個部份我們將介紹4物種的生物競爭模型,包含兩原生物種以及兩外來種之生物競爭模型,並設定原生物種為彼此強競爭之關係,外來物種為弱勢族群(弱競爭)的狀態。我們將證明,在適當條件之下此模型存在非0之行波解。第二部份,我們將利用變分形式之最小最大公式,將兩強競爭物種的生物模型中,行波解之波速零值條件表示出來。此外,我們即可間接利用此公式得到行波解波速的正負號判準。zh_TW
dc.description.abstractThis article is divided into two parts. In the first part, we explores the question of whether coexistence can persist over time when a third and forth species, denoted as w1 and w2, invade an ecosystem which is comprised of two species u and v, within the domain R. In this scenario, u, v, w1,and w2 engage in competition with each other. Assuming that the impact of wi on u and v are very small, along with other appropriate conditions, we demonstrate that these four species can coexist in the form of a non-monotone traveling wave. Our new technique, using the method of iteration argument, Schauder’s Fixed point theory, sub- and super-solutions and the bifurcation theory, provides methods for constructing small perturbation types of non-monotonic waves. In the second part, we use a min-max variational approach to represent the sign of the traveling wave speed in the two species Lotka-Volterra system with strong competition.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-12T16:13:41Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-12T16:13:41Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsChapter 1 Introduction and Results (P1)
Chapter 1.1 The traveling wave solution of 4-species model (P1)
Chapter 1.2 The sign of the traveling wave speed (P9)

Chapter 2 The Prove of the Theorem 1.1.2 (P14)
Chapter 2.1 4=2+1+1 Argument (P14)

Chapter 3 The Application of the Theorem 1.1.2 (P27)
Chapter 3.1 Motivation (P27)
Chapter 3.2 Theorem (P27)
Chapter 3.3 Example (P31)

Chapter 4 The Prove of the Theorem 1.2.1 & 1.2.2 (P33)
Chapter 4.1 Comparison Property (P33)
Chapter 4.2 The Prove of the Theorem 1.2.1. (P39)
Chapter 4.3 The Prove of the Theorem 1.2.2. (P43)

Chapter 5 Application of the rc formula (P51)
Chapter 5.1 Girardin conjecture (P51)
Chapter 5.2 Proof of Theorem 5.1.1 (P55)
Chapter 5.3 Proof of Corollary 5.1.2 (P60)

Appendix A Estimates for rc (P61)

A.1 An Example of the Estimates for rc (P61)
A.2 An Example of a Sharper Estimate (P62)

Appendix B Another proof of the Perturbation Theory (P63)
B.1 Perturbation theory for 2-species system (P63)
B.2 The prove of Perturbation result (P65)

Appendix C The matrix identity (P68)

References (P71)
-
dc.language.isoen-
dc.subject洛特卡-佛爾特拉生物競爭方程組zh_TW
dc.subject反應擴散方程zh_TW
dc.subject變分zh_TW
dc.subject行波解波速zh_TW
dc.subject四物種zh_TW
dc.subjectTraveling wave solutionen
dc.subjectVariational formulaen
dc.subjectWave Speeden
dc.subjectCompetition-diffusion modelen
dc.subjectMini-Max approachen
dc.subjectLotka-Volterraen
dc.title4物種 Lotka-Volterra 擴散競爭模型解的存在性與2物種行波解波速之研究zh_TW
dc.titleThe Existence of Traveling Wave Solutions to the 4-Species Lotka-Volterra Competition Diffusion System and the Sign of the Traveling Wave Speed in the 2-Species Modelen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee王振男;林太家;吳昌鴻;陳逸昆;林俊吉;陳建隆zh_TW
dc.contributor.oralexamcommitteeJenn-Nan Wang;Tai-Chia Lin;Chang-Hong Wu;I-Kun Chen;Chun-Chi Lin;Jann-Long Chernen
dc.subject.keyword反應擴散方程,洛特卡-佛爾特拉生物競爭方程組,四物種,行波解波速,變分,zh_TW
dc.subject.keywordLotka-Volterra, Competition-diffusion model,Mini-Max approach,Traveling wave solution,Wave Speed,Variational formula,en
dc.relation.page74-
dc.identifier.doi10.6342/NTU202401563-
dc.rights.note未授權-
dc.date.accepted2024-07-11-
dc.contributor.author-college理學院-
dc.contributor.author-dept數學系-
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
7.09 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved