Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93003
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 陳俊全 | zh_TW |
dc.contributor.advisor | Chiun-Chuan Chen | en |
dc.contributor.author | 王舜傑 | zh_TW |
dc.contributor.author | Shun-Chieh Wang | en |
dc.date.accessioned | 2024-07-12T16:13:41Z | - |
dc.date.available | 2024-07-13 | - |
dc.date.copyright | 2024-07-12 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-07-10 | - |
dc.identifier.citation | [1] B. S. A.J. Homburg. Homoclinic and heteroclinic bifurcations in vector fields. volume 3, pages 379–524. Handbook of dynamical systems, 2010.
[2] F. D. Alzahrani and D. N. Travelling waves in neardegenerate bistable competition models. In Math. Model. Nat. Phenom., volume 5 of 5, pages 13–35. 2010. [3] L.-C. H. Chiun-Chuan Chen. An n-barrier maximum principle for elliptic systems arising from the study of traveling waves in reaction-diffusion systems. In DCDS-B, volume 23 of 4, pages 1503–1521. 2018. [4] M. M. Chiun-Chuan Chen1, Li-Chang Hung and D. Ueyama. Exact travelling wave solutions of three-species competition–diffusion systems. In DCDS-B, volume 17 of 8, pages 2653–2669. 2012. [5] L.-C. H. M. M. Chueh-Hsin Chang, Chiun-Chuan Chen and T. Ogawa. Existence and stability of non-monotone travelling wave solutions for the diffusive lotka–volterra system of three competing species. In Nonlinearity, volume 33 of 10, pages 5080–5110. IOP Publishing, 2020. [6] C. Conley and R. Gardner. An application of the generalized morse index to travelling wave solutions of a competitive reaction-diffusion model. In Indiana Univ. Math. J., volume 33, pages 319–343. 1984. [7] M. M. T. . P. C. Fife. Propagating fronts for competing species equations with diffusion. In Arch. Rational Mech. Anal., volume 73, pages 69–77. Springer, 1980. [8] R. Gardner. Existence and stability of travelling wave solutions of competition models: A degree theoretic approach. In J. Differential Equations, volume 44, pages 343–364. 1982. [9] L. Girardin. The effect of random dispersal on competitive exclusion–a review. In Math. Biosciences, volume 318, page 108271. 555, 2019. [10] C. J. N. H. Berestycki, O. Diekmann and P. A. Zegeling. Can a species keep pace with a shifting climate? In Bull Math Biol., volume 71 of 2, pages 399–429. Spinger,2009. [11] K. P. Hadeler and F. Rothe. Traveling fronts in nonlinear diffusion equations. In J.Math. Biol., volume 2, pages 251–263. 1975. [12] S. Heinze and B. Schweizer. Creeping fronts in degenerate reaction-diffusion systems. In Nonlinearity, volume 18 of 6, pages 2455–2476. 2005. [13] P. C. C. Hirsch M W and S. M. Invariant manifolds. In Lecture Notes in Mathematics,volume 583. Springer, 1977. [14] L.-C. Hung. Exact traveling wave solutions or diffusive lotka-volterra systems of two competing species. In Japan J. Indust. Appl. Math., volume 29, pages 237–251.2012. [15] Y.-C. L. J.-S. Guo. The sign of the wave speed for the lotka-volterra competition-diffusion system. In Commun. Pure Appl. Anal., volume 12 of 5, pages 2083–2090. 2013 [16] W.-H. F. Jia-Dong Yang. The state of taiwan’s birds 2o2o. Taiwan Endemic Species Research Institute, 2020. [17] Y. Kan-on. Parameter dependence of propagation speed of travelling waves for competition-diffusion equations. In SIAM Journal on Mathematic Analysis, volume 26 of 2, pages 340–363. SIAM, 1995. [18] Y. Kan-on. Existence of standing waves for competition-diffusion equations. In Japan J. Indust. Appl. Math., volume 13, page 117–133. 1996. [19] Y. Kan-on. Fisher wave fronts for the lotka–volterra competition model with diffusion. In Nonlinear Anal., volume 28, pages 145–164. 1997. [20] Y. Kan-on and Q. Fang. Stability of monotone travelling waves for competition-diffusion equations. In Japan J. Indust. Appl. Math., pages 343–349. Spinger, 1996. [21] Y. Kan-on and E. Yanagida. Existence of non-constant stable equilibria in competition-diffusion equations. In Hiroshima Math. J., volume 33, pages 193–221.1993. [22] H. Kokubu. Homoclinic and heteroclinic bifurcations of vector fields. In Japan Journal of Applied Mathematics, volume 5, pages 455–501. Springer, 1988. [23] Y. K. L Zhou. A new proof of existence of the wave front solutions for a kind of reaction-diffusion system. In Nonlinear Evolutionary Partial Differential equations (Beijing, 1993), pages 469–482. AMS/IP Stud. Adv. Math. 3, 1997. [24] Z. H. M. Ma and C. Ou. Speed of the traveling wave for the bistable lotka-volterra competition model. In Nonlinearity, volume 32 of 9, pages 3143–3162. 2019 [25] M. T. M. Mimura. Dynamic coexistence in a three-species competition–diffusion system. In Ecol. Complex., pages 215–232. 2014. [26] M. M. M. Rodrigo. Exact solutions of a competition-diffusion system. volume 30, pages 257–270. Hiroshima Math.J., 2000. [27] S.-C. W. Mao-Sheng Chang, Chiun-Chuan Chen. Propagating direction in the two species lotka-volterra competition-diffusion system. In DCDS-B, volume 28 of 12, pages 5998–6014. 2023. [28] S. Merino. A note on the existence of travelling waves for the fisher-kolmogorov equation via the method of sub- and supersolutions. In International Conference on Differential Equations, pages 488–452. World Sci. Publ., River Edge, NJ, 1998. [29] E. Risler. Competition between stable equilibria in reaction-diffusion systems: the influence of mobility on dominance. In ArXiv e-prints. 2017. [30] M. Rodrigo and M. Mimura. Exact solutions of reaction-diffusion systems and nonlinear wave equations. In Japan J. Indust. Appl. Math., volume 18, pages 657–696.2001. [31] B. S. S. Heinze and H. Schwetlick. Existence of front solutions in degenerate reaction diffusion systems. In preprint. 2004. [32] I. Trägårdh. Entomologiska analyser av torkande träd. In Medd. Stat. Skogsförsöksanst., pages 191–216. 1927. [33] S.-C. Wang. Traveling wave solutions of lotka-volterra diffusion competition system with 3-species. Master’s thesis, National Taiwan University, June 2018. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93003 | - |
dc.description.abstract | 這篇論文分成兩個部分。第一個部份我們將介紹4物種的生物競爭模型,包含兩原生物種以及兩外來種之生物競爭模型,並設定原生物種為彼此強競爭之關係,外來物種為弱勢族群(弱競爭)的狀態。我們將證明,在適當條件之下此模型存在非0之行波解。第二部份,我們將利用變分形式之最小最大公式,將兩強競爭物種的生物模型中,行波解之波速零值條件表示出來。此外,我們即可間接利用此公式得到行波解波速的正負號判準。 | zh_TW |
dc.description.abstract | This article is divided into two parts. In the first part, we explores the question of whether coexistence can persist over time when a third and forth species, denoted as w1 and w2, invade an ecosystem which is comprised of two species u and v, within the domain R. In this scenario, u, v, w1,and w2 engage in competition with each other. Assuming that the impact of wi on u and v are very small, along with other appropriate conditions, we demonstrate that these four species can coexist in the form of a non-monotone traveling wave. Our new technique, using the method of iteration argument, Schauder’s Fixed point theory, sub- and super-solutions and the bifurcation theory, provides methods for constructing small perturbation types of non-monotonic waves. In the second part, we use a min-max variational approach to represent the sign of the traveling wave speed in the two species Lotka-Volterra system with strong competition. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-12T16:13:41Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-07-12T16:13:41Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Chapter 1 Introduction and Results (P1)
Chapter 1.1 The traveling wave solution of 4-species model (P1) Chapter 1.2 The sign of the traveling wave speed (P9) Chapter 2 The Prove of the Theorem 1.1.2 (P14) Chapter 2.1 4=2+1+1 Argument (P14) Chapter 3 The Application of the Theorem 1.1.2 (P27) Chapter 3.1 Motivation (P27) Chapter 3.2 Theorem (P27) Chapter 3.3 Example (P31) Chapter 4 The Prove of the Theorem 1.2.1 & 1.2.2 (P33) Chapter 4.1 Comparison Property (P33) Chapter 4.2 The Prove of the Theorem 1.2.1. (P39) Chapter 4.3 The Prove of the Theorem 1.2.2. (P43) Chapter 5 Application of the rc formula (P51) Chapter 5.1 Girardin conjecture (P51) Chapter 5.2 Proof of Theorem 5.1.1 (P55) Chapter 5.3 Proof of Corollary 5.1.2 (P60) Appendix A Estimates for rc (P61) A.1 An Example of the Estimates for rc (P61) A.2 An Example of a Sharper Estimate (P62) Appendix B Another proof of the Perturbation Theory (P63) B.1 Perturbation theory for 2-species system (P63) B.2 The prove of Perturbation result (P65) Appendix C The matrix identity (P68) References (P71) | - |
dc.language.iso | en | - |
dc.title | 4物種 Lotka-Volterra 擴散競爭模型解的存在性與2物種行波解波速之研究 | zh_TW |
dc.title | The Existence of Traveling Wave Solutions to the 4-Species Lotka-Volterra Competition Diffusion System and the Sign of the Traveling Wave Speed in the 2-Species Model | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 博士 | - |
dc.contributor.oralexamcommittee | 王振男;林太家;吳昌鴻;陳逸昆;林俊吉;陳建隆 | zh_TW |
dc.contributor.oralexamcommittee | Jenn-Nan Wang;Tai-Chia Lin;Chang-Hong Wu;I-Kun Chen;Chun-Chi Lin;Jann-Long Chern | en |
dc.subject.keyword | 反應擴散方程,洛特卡-佛爾特拉生物競爭方程組,四物種,行波解波速,變分, | zh_TW |
dc.subject.keyword | Lotka-Volterra, Competition-diffusion model,Mini-Max approach,Traveling wave solution,Wave Speed,Variational formula, | en |
dc.relation.page | 74 | - |
dc.identifier.doi | 10.6342/NTU202401563 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2024-07-11 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 數學系 | - |
Appears in Collections: | 數學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-112-2.pdf Restricted Access | 7.09 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.