Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93003
Title: 4物種 Lotka-Volterra 擴散競爭模型解的存在性與2物種行波解波速之研究
The Existence of Traveling Wave Solutions to the 4-Species Lotka-Volterra Competition Diffusion System and the Sign of the Traveling Wave Speed in the 2-Species Model
Authors: 王舜傑
Shun-Chieh Wang
Advisor: 陳俊全
Chiun-Chuan Chen
Keyword: 反應擴散方程,洛特卡-佛爾特拉生物競爭方程組,四物種,行波解波速,變分,
Lotka-Volterra, Competition-diffusion model,Mini-Max approach,Traveling wave solution,Wave Speed,Variational formula,
Publication Year : 2024
Degree: 博士
Abstract: 這篇論文分成兩個部分。第一個部份我們將介紹4物種的生物競爭模型,包含兩原生物種以及兩外來種之生物競爭模型,並設定原生物種為彼此強競爭之關係,外來物種為弱勢族群(弱競爭)的狀態。我們將證明,在適當條件之下此模型存在非0之行波解。第二部份,我們將利用變分形式之最小最大公式,將兩強競爭物種的生物模型中,行波解之波速零值條件表示出來。此外,我們即可間接利用此公式得到行波解波速的正負號判準。
This article is divided into two parts. In the first part, we explores the question of whether coexistence can persist over time when a third and forth species, denoted as w1 and w2, invade an ecosystem which is comprised of two species u and v, within the domain R. In this scenario, u, v, w1,and w2 engage in competition with each other. Assuming that the impact of wi on u and v are very small, along with other appropriate conditions, we demonstrate that these four species can coexist in the form of a non-monotone traveling wave. Our new technique, using the method of iteration argument, Schauder’s Fixed point theory, sub- and super-solutions and the bifurcation theory, provides methods for constructing small perturbation types of non-monotonic waves. In the second part, we use a min-max variational approach to represent the sign of the traveling wave speed in the two species Lotka-Volterra system with strong competition.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93003
DOI: 10.6342/NTU202401563
Fulltext Rights: 未授權
Appears in Collections:數學系

Files in This Item:
File SizeFormat 
ntu-112-2.pdf
  Restricted Access
7.09 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved