Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 會計學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92597
Title: 財報盈餘預測及套利可能探討—序列深度學習模型應用
Financial Report Earnings Prediction and Arbitrage Potential – an Application of Sequential Deep Learning Models
Authors: 黃家駿
Kay Jun Ng
Advisor: 蔡彥卿
Yann-Ching Tsai
Co-Advisor: 劉心才
Hsin-Tsai Liu
Keyword: 每股盈餘預測,深度學習,機器學習,時間序列,套利,投資策略,
Earning per Share Prediction,Deep Learning,Machine Learning,Time Series,Arbitrage,Investment Strategy,
Publication Year : 2024
Degree: 碩士
Abstract: 每股盈餘是許多投資人評估公司盈利能力的關鍵指標,公司每股盈餘的表現是影響投資人決策的重要因素之一,若能夠對公司每股盈餘進行準確的預測,將成為可靠的投資依據。本論文使用公司過去資產負債表、綜合損益表及現金流量表中的會計科目,透過建立 GRU、LSTM、雙向LSTM、Transformer 及 TST 等 5 個深度學習模型以及隨機森林和 XGBoost 等 2 個機器學習模型,對公司下一年度之調整每股盈餘及調整稀釋每股盈餘進行預測,再根據預測結果同時部署多頭及空頭部位,形成零成本投資組合,以實證人工智慧技術的套利可能性。
本論文建立之深度學習模型及機器學習模型在預測能力上皆優於基準值,其中以遞迴神經網路模型的預測能力表現最佳,深度學習模型整體優於機器學習模型。此外,本論文對於自變數使用了兩種特徵維度縮減方法,其中自編碼器方法能夠顯著的提升本研究所建立之深度學習模型的預測能力。然而,雖然機器學習方法之預測能力不如深度學習方法,但若以市值加權投資策略觀察套利結果,XGBoost是報酬率最高的模型,其他模型在適當的投資比例下亦存在套利空間;而以平均加權投資策略觀察套利結果,則所有模型均存在套利空間。
The earnings per share (EPS) stands as a crucial measure for many investors when evaluating a company's profitability, the performance of a company's EPS is one of the significant factors influencing investor decisions. An accurate prediction of a company's EPS can serve as a reliable basis for investment. This study utilizes accounting information from the company's historical published balance sheets, comprehensive income statements, and cash flow statement. Five deep learning models (GRU, LSTM, Bidirectional LSTM, Transformer, and TST) as well as two machine learning models (Random Forest and XGBoost) are applied to predict the adjusted EPS and adjusted diluted EPS for the upcoming fiscal year. These predictions are then used to form a zero-cost investment portfolio, incorporating both long and short positions, to demonstrate the arbitrage potential of artificial intelligence technology.
This study demonstrates the capacity of both deep learning and machine learning models to predict the adjusted earnings per share and adjusted diluted earnings per share for the upcoming fiscal year. All models exhibit superior performance compared to the baseline; the Recurrent Neural Network model exhibits the strongest predictive capability. Additionally, two methods for dimensionality reduction were applied in this study, the autoencoder method significantly enhanced the performance of the deep learning models. However, while the predictive ability of machine learning methods trails behind that of deep learning methods, when evaluated through a market-capital weighted investment strategy, the XGBoost model demonstrates the highest return rate. At appropriate investment ratios, other models also demonstrate potential arbitrage opportunities; On the other hand, under an equal-weighted investment strategy, all models exhibit potential arbitrage opportunities.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92597
DOI: 10.6342/NTU202400905
Fulltext Rights: 同意授權(限校園內公開)
metadata.dc.date.embargo-lift: 2029-04-26
Appears in Collections:會計學系

Files in This Item:
File SizeFormat 
ntu-112-2.pdf
  Restricted Access
5.45 MBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved