請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92597完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡彥卿 | zh_TW |
| dc.contributor.advisor | Yann-Ching Tsai | en |
| dc.contributor.author | 黃家駿 | zh_TW |
| dc.contributor.author | Kay Jun Ng | en |
| dc.date.accessioned | 2024-05-02T16:07:40Z | - |
| dc.date.available | 2024-05-03 | - |
| dc.date.copyright | 2024-05-01 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-04-29 | - |
| dc.identifier.citation | Ariyo, A. A., A. O. Adewumi, and C. K. Ayo. 2014. Stock Price Prediction Using the ARIMA Model. In 2014 UKSim-AMSS 16th International Conference on Computer Modelling and Simulation, 106-112.
Chen, K., Y. Zhou, and F. Dai. 2015. A LSTM-based method for stock returns prediction: A case study of China stock market. Chen, T., and C. Guestrin. 2016. Xgboost: A scalable tree boosting system. Paper read at Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. Chen, X. I., Y. H. Cho, Y. Dou, and B. Lev. 2022. Predicting Future Earnings Changes Using Machine Learning and Detailed Financial Data. Journal of Accounting Research 60 (2):467-515. Chung, J., C. Gulcehre, K. Cho, and Y. Bengio. 2014. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling, arXiv:1412.3555. FAMA, E. F., and K. R. FRENCH. 1992. The Cross-Section of Expected Stock Returns. The Journal of Finance 47 (2):427-465. Fischer, T., and C. Krauss. 2018. Deep learning with long short-term memory networks for financial market predictions. European Journal of Operational Research 270 (2):654-669. Graham, J. R., C. R. Harvey, and S. Rajgopal. 2005. The economic implications of corporate financial reporting. Journal of accounting and economics 40 (1-3):3-73. Hochreiter, S., and J. Schmidhuber. 1997. Long Short-Term Memory. Neural Computation 9 (8):1735-1780. Islam, M., T. Rahman, T. Choudhury, A. Adnan, and S. Lecturer. 2014. How Earning Per Share (EPS) Affects on Share Price and Firm Value. European Journal of Business and Management 6. Ou, J. A., and S. H. Penman. 1989. Financial statement analysis and the prediction of stock returns. Journal of Accounting and Economics 11 (4):295-329. Salinas, D., V. Flunkert, J. Gasthaus, and T. Januschowski. 2020. DeepAR: Probabilistic forecasting with autoregressive recurrent networks. International Journal of Forecasting 36 (3):1181-1191. Sharpe, W. F., G. J. Alexander, and J. V. Bailey. 1999. Investment: Prentice Hall Incorporated. Siami-Namini, S., and A. Siami Namin. 2018. Forecasting Economics and Financial Time Series: ARIMA vs. LSTM, arXiv:1803.06386. Su, C.-W., Y.-W. Chang, Y.-S. Chen, and H.-L. Chang. 2008. The Relationship between Stock Price and EPS: Evidence Based on Taiwan Panel Data. Economics Bulletin 3:1-12. Tin Kam, H. 1995. Random decision forests. Paper read at Proceedings of 3rd International Conference on Document Analysis and Recognition, 14-16 Aug. 1995. Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin. 2017. Attention Is All You Need. Wang, C., Y. Chen, S. Zhang, and Q. Zhang. 2022. Stock market index prediction using deep Transformer model. Expert Systems with Applications 208. Yang, Y., Y. Wu, P. Wang, and X. Jiali. 2021. Stock Price Prediction Based on XGBoost and LightGBM. E3S Web of Conferences 275:01040. Zeng, Z., R. Kaur, S. Siddagangappa, S. Rahimi, T. Balch, and M. Veloso. 2023. Financial Time Series Forecasting using CNN and Transformer, arXiv:2304.04912. Zerveas, G., S. Jayaraman, D. Patel, A. Bhamidipaty, and C. Eickhoff. 2020. A Transformer-based Framework for Multivariate Time Series Representation Learning, arXiv:2010.02803. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92597 | - |
| dc.description.abstract | 每股盈餘是許多投資人評估公司盈利能力的關鍵指標,公司每股盈餘的表現是影響投資人決策的重要因素之一,若能夠對公司每股盈餘進行準確的預測,將成為可靠的投資依據。本論文使用公司過去資產負債表、綜合損益表及現金流量表中的會計科目,透過建立 GRU、LSTM、雙向LSTM、Transformer 及 TST 等 5 個深度學習模型以及隨機森林和 XGBoost 等 2 個機器學習模型,對公司下一年度之調整每股盈餘及調整稀釋每股盈餘進行預測,再根據預測結果同時部署多頭及空頭部位,形成零成本投資組合,以實證人工智慧技術的套利可能性。
本論文建立之深度學習模型及機器學習模型在預測能力上皆優於基準值,其中以遞迴神經網路模型的預測能力表現最佳,深度學習模型整體優於機器學習模型。此外,本論文對於自變數使用了兩種特徵維度縮減方法,其中自編碼器方法能夠顯著的提升本研究所建立之深度學習模型的預測能力。然而,雖然機器學習方法之預測能力不如深度學習方法,但若以市值加權投資策略觀察套利結果,XGBoost是報酬率最高的模型,其他模型在適當的投資比例下亦存在套利空間;而以平均加權投資策略觀察套利結果,則所有模型均存在套利空間。 | zh_TW |
| dc.description.abstract | The earnings per share (EPS) stands as a crucial measure for many investors when evaluating a company's profitability, the performance of a company's EPS is one of the significant factors influencing investor decisions. An accurate prediction of a company's EPS can serve as a reliable basis for investment. This study utilizes accounting information from the company's historical published balance sheets, comprehensive income statements, and cash flow statement. Five deep learning models (GRU, LSTM, Bidirectional LSTM, Transformer, and TST) as well as two machine learning models (Random Forest and XGBoost) are applied to predict the adjusted EPS and adjusted diluted EPS for the upcoming fiscal year. These predictions are then used to form a zero-cost investment portfolio, incorporating both long and short positions, to demonstrate the arbitrage potential of artificial intelligence technology.
This study demonstrates the capacity of both deep learning and machine learning models to predict the adjusted earnings per share and adjusted diluted earnings per share for the upcoming fiscal year. All models exhibit superior performance compared to the baseline; the Recurrent Neural Network model exhibits the strongest predictive capability. Additionally, two methods for dimensionality reduction were applied in this study, the autoencoder method significantly enhanced the performance of the deep learning models. However, while the predictive ability of machine learning methods trails behind that of deep learning methods, when evaluated through a market-capital weighted investment strategy, the XGBoost model demonstrates the highest return rate. At appropriate investment ratios, other models also demonstrate potential arbitrage opportunities; On the other hand, under an equal-weighted investment strategy, all models exhibit potential arbitrage opportunities. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-05-02T16:07:40Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-05-02T16:07:40Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝辭 i
摘要 ii ABSTRACT iii 目次 iv 圖次 vi 表次 x 第一章 緒論 1 1.1 研究動機與目標 1 1.2 研究架構 2 第二章 文獻回顧 3 2.1 每股盈餘預測及股價套利 3 2.2 時間序列機器學習及深度學習方法 4 第三章 資料蒐集及研究方法 7 3.1 資料說明及前處理 7 3.1.1 資料選擇 7 3.1.2 資料特徵處理 9 3.1.3 正規化及標準化 12 3.1.4 自變數及應變數組合 13 3.1.5 時間資料切分 14 3.2 資料維度縮減 15 3.2.1 主成分分析 15 3.2.2 自編碼器 17 3.3 模型選擇及超參數調整 20 3.3.1 遞迴神經網路(Recurrent Neural Network, RNN)模型 20 3.3.2 Transformer 模型 23 3.3.3 樹類機器學習模型 25 3.3.4 超參數調整 27 3.4 模型評估 30 3.5 套利模型 31 第四章 研究結果分析 34 4.1 各模型預測能力及各資料特徵分析 34 4.1.1 探討各模型對不同資料特徵的預測能力 34 4.1.2 探討各資料特徵在各模型下之預測能力 47 4.1.3 各模型及資料特徵組合選擇 53 4.2 套利模型結果分析 61 4.2.1 探討各模型於各年度之套利結果 - 以平均加權策略 61 4.2.2 探討各模型於各年度之套利結果 - 以市值加權策略 69 4.2.3 探討各年度投資部位各別報酬率 – 以平均加權策略 77 4.2.4 探討各年度投資部位各別報酬率 – 以市值加權策略 82 4.2.5 探討各模型平均套利結果 88 第五章 結論與建議 92 5.1 研究結論 92 5.2 研究限制與建議 93 參考文獻 95 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 每股盈餘預測 | zh_TW |
| dc.subject | 套利 | zh_TW |
| dc.subject | 投資策略 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 時間序列 | zh_TW |
| dc.subject | Deep Learning | en |
| dc.subject | Earning per Share Prediction | en |
| dc.subject | Machine Learning | en |
| dc.subject | Investment Strategy | en |
| dc.subject | Arbitrage | en |
| dc.subject | Time Series | en |
| dc.title | 財報盈餘預測及套利可能探討—序列深度學習模型應用 | zh_TW |
| dc.title | Financial Report Earnings Prediction and Arbitrage Potential – an Application of Sequential Deep Learning Models | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 劉心才 | zh_TW |
| dc.contributor.coadvisor | Hsin-Tsai Liu | en |
| dc.contributor.oralexamcommittee | 簡雪芳;李淑華 | zh_TW |
| dc.contributor.oralexamcommittee | Hsueh-Fang Chien;Shu-Hua Lee | en |
| dc.subject.keyword | 每股盈餘預測,深度學習,機器學習,時間序列,套利,投資策略, | zh_TW |
| dc.subject.keyword | Earning per Share Prediction,Deep Learning,Machine Learning,Time Series,Arbitrage,Investment Strategy, | en |
| dc.relation.page | 96 | - |
| dc.identifier.doi | 10.6342/NTU202400905 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-04-29 | - |
| dc.contributor.author-college | 管理學院 | - |
| dc.contributor.author-dept | 會計學系 | - |
| dc.date.embargo-lift | 2029-04-26 | - |
| 顯示於系所單位: | 會計學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 5.45 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
