Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90798
Title: 基於時空圖神經網絡之海上犯罪預測
Maritime Crime Prediction with Spatial-Temporal Graph Neural Network
Authors: 王佩晨
Pei-Chen Wang
Advisor: 曹承礎
Seng-Cho Chou
Keyword: 海上犯罪預測,時空圖神經網絡,Autoformer,時間序列預測,
Maritime crime prediction,spatial-temporal GNN,Autoformer,time series model,
Publication Year : 2023
Degree: 碩士
Abstract: 犯罪預測在近幾年逐漸成為一個重要的議題,其有助於協助政府維護社會安全。而隨著深度學習的成熟和圖神經網絡的興起,越來越多學者投入這個領域的研究,透過各種方法來增加預測的準確率。然而,目前的研究都僅限於陸地上的犯罪預測,忽略的預防海上犯罪的重要性。海上犯罪影響的層面涉及社會治安及環境保護,且擁有的人力資源更稀少、範圍更廣,因此海上犯罪預測任務成為一大挑戰。

在本研究中,我們提出了一個名為ST-AAGAT的新時空圖網絡模型架構。此模型致力於透過圖神經網絡找到空間的相關性,再藉由Autoformer架構尋找犯罪發生的週期性,並結合捕捉到的時間和空間特徵進行時間序列的預測。我們將此模型在台灣海巡署的真實犯罪資料集上進行多個不同面向的實驗,結果顯示 ST-AAGAT相較於其他模型有更好的表現。透過這項研究,我們希望能夠協助海巡署更有效地進行人力派遣,同時實現海上犯罪的預防和提高環境保護的意識。
Crime prediction has become an important issue in recent years as it helps governments maintain social security. With the maturity of deep learning and the rise of graph neural networks, more researchers have been studying this field, employing various methods to enhance prediction accuracy. However, current research is limited to crime prediction on land, neglecting the significance of preventing maritime crimes. Due to the limited human resources and a broader scope, maritime crime prediction has become challenging.

In this study, we propose a novel spatial-temporal graph neural network model called ST-AAGAT. This model aims to identify spatial correlations through graph neural networks and leverage the Autoformer architecture to find the periodicity of crime. After that, we combine temporal and spatial patterns to predict the crime occurrence probability from time series data. We conducted experiments on maritime crime datasets with various aspects, and the results demonstrated that ST-AAGAT outperformed other models. Through this research, we hope to assist the coast guard administration in deploying resources more efficiently, preventing maritime crimes, and raising awareness for environmental protection.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90798
DOI: 10.6342/NTU202300954
Fulltext Rights: 未授權
Appears in Collections:資訊管理學系

Files in This Item:
File SizeFormat 
ntu-111-2.pdf
  Restricted Access
4.17 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved