Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90798
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曹承礎zh_TW
dc.contributor.advisorSeng-Cho Chouen
dc.contributor.author王佩晨zh_TW
dc.contributor.authorPei-Chen Wangen
dc.date.accessioned2023-10-03T17:40:11Z-
dc.date.available2023-11-09-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-06-07-
dc.identifier.citationBAI, L., Yao, L., Li, C., Wang, X., and Wang, C. (2020). Adaptive Graph Convolutional Recurrent Network for Traffic Forecasting. In Larochelle, H., Ranzato, M., Hadsell, R.,
Balcan, M., and Lin, H., editors, Advances in Neural Information Processing Systems, volume 33, pages 17804–17815. Curran Associates, Inc.
Box, G. E. and Pierce, D. A. (1970). Distribution of residual autocorrelations in autoregressive-integrated moving average time series models. Journal of the American statistical Association, 65(332):1509–1526.
Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555.
Guo, S., Lin, Y., Feng, N., Song, C., and Wan, H. (2019). Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting. Proceedings of the AAAI Conference on Artificial Intelligence, 33(01):922–929.
Hamilton, W., Ying, Z., and Leskovec, J. (2017). Inductive Representa tion Learning on Large Graphs. In Guyon, I., Luxburg, U. V., Ben gio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.
Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8):1735–1780.
Hou, M., Hu, X., Cai, J., Han, X., and Yuan, S. (2022). An Integrated Graph Model for Spatial – Temporal Urban Crime Prediction Based on Attention Mechanism. ISPRS International Journal of Geo-Information, 11:294.
Huang, C., Zhang, J., Zheng, Y., and Chawla, N. V. (2018). DeepCrime: Attentive Hierarchical Recurrent Networks for Crime Prediction. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management, CIKM’18, page 1423–1432, New York, NY, USA. Association for Computing Machinery.
Kipf, T. N. and Welling, M. (2016). Semi-Supervised Classification with Graph Convo lutional Networks. CoRR, abs/1609.02907.
Li, R., Wang, S., Zhu, F., and Huang, J. (2018). Adaptive Graph Convolutional Neural Networks. Proceedings of the AAAI Conference on Artificial Intelligence, 32(1).
Li, Y., Yu, R., Shahabi, C., and Liu, Y. (2017). Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting.
Li, Z., Huang, C., Xia, L., Xu, Y., and Pei, J. (2022). Spatial Temporal Hypergraph Self-Supervised Learning for Crime Prediction. In 2022 IEEE 38th International Conference on Data Engineering (ICDE). IEEE.
Lu, B., Gan, X., Jin, H., Fu, L., and Zhang, H. (2020a). Spatiotemporal Adap tive Gated Graph Convolution Network for Urban Traffic Flow Forecasting. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management, CIKM ’20, page 1025–1034, New York, NY, USA. Association for Computing Machinery.
Lu, B., Gan, X., Jin, H., Fu, L., and Zhang, H. (2020b). Spatiotemporal adaptive gated graph convolution network for urban traffic flow forecasting. In Proceedings of the 29th ACM International Conference on Information and Knowledge Management, CIKM ’20, page 1025–1034, New York, NY, USA. Association for Computing Machinery.
Song, C., Lin, Y., Guo, S., and Wan, H. (2020). Spatial-Temporal Synchronous Graph Convolutional Networks: A New Framework for Spatial-Temporal Network Data Fore casting. Proceedings of the AAAI Conference on Artificial Intelligence, 34(01):914–921.
Sun, J., Yue, M., Lin, Z., Yang, X., Nocera, L., Kahn, G., and Sha habi, C. (2021). CrimeForecaster: Crime Prediction by Exploiting the Geographical Neighborhoods’ Spatiotemporal Dependencies. In Machine Learning and Knowledge Discovery in Databases. Applied Data Science and Demo Track, pages 52–67, Cham. Springer International Publishing.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. u., and Polosukhin, I. (2017). Attention is All you Need. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., ed itors, Advances in Neural Information Processing Systems, volume 30. Curran Asso ciates, Inc.
Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., and Bengio, Y. (2017). Graph Attention Networks.
Wang, C., Lin, Z., Yang, X., Sun, J., Yue, M., and Shahabi, C. (2022). HAGEN: Homophily-Aware Graph Convolutional Recurrent Network for Crime Forecasting. Proceedings of the AAAI Conference on Artificial Intelligence, 36(4):4193–4200.
Wu, H., Xu, J., Wang, J., and Long, M. (2021). Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting. In Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan, J. W., editors, Advances in Neural Information Processing Systems, volume 34, pages 22419–22430. Curran Associates, Inc.
Wu, Z., Pan, S., Long, G., Jiang, J., and Zhang, C. (2019). Graph WaveNet for Deep Spatial-Temporal Graph Modeling.
Xia, L., Huang, C., Xu, Y., Dai, P., Bo, L., Zhang, X., and Chen, T. (2021). Spatial-Temporal Sequential Hypergraph Network for Crime Prediction with Dynamic Multiplex Relation Learning. In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21, pages 1631–1637. International Joint Conferences on Artificial Intelligence Organization. Main Track.
Yu, B., Yin, H., and Zhu, Z. (2017). Spatio-temporal Graph Convolutional Neural Net work: A Deep Learning Framework for Traffic Forecasting. CoRR, abs/1709.04875.
Zhang, J., Shi, X., Xie, J., Ma, H., King, I., and Yeung, D.-Y. (2018). GaAN: Gated Attention Networks for Learning on Large and Spatiotemporal Graphs.
Zhang, K., Li, T., Shen, S., Liu, B., Chen, J., and Liu, Q. (2020). Adaptive Graph Convolutional Network With Attention Graph Clustering for Co-Saliency Detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
Zheng, C., Fan, X., Wang, C., and Qi, J. (2020). GMAN: A Graph Multi-Attention Network for Traffic Prediction. Proceedings of the AAAI Conference on Artificial Intelligence, 34(01):1234–1241.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90798-
dc.description.abstract犯罪預測在近幾年逐漸成為一個重要的議題,其有助於協助政府維護社會安全。而隨著深度學習的成熟和圖神經網絡的興起,越來越多學者投入這個領域的研究,透過各種方法來增加預測的準確率。然而,目前的研究都僅限於陸地上的犯罪預測,忽略的預防海上犯罪的重要性。海上犯罪影響的層面涉及社會治安及環境保護,且擁有的人力資源更稀少、範圍更廣,因此海上犯罪預測任務成為一大挑戰。

在本研究中,我們提出了一個名為ST-AAGAT的新時空圖網絡模型架構。此模型致力於透過圖神經網絡找到空間的相關性,再藉由Autoformer架構尋找犯罪發生的週期性,並結合捕捉到的時間和空間特徵進行時間序列的預測。我們將此模型在台灣海巡署的真實犯罪資料集上進行多個不同面向的實驗,結果顯示 ST-AAGAT相較於其他模型有更好的表現。透過這項研究,我們希望能夠協助海巡署更有效地進行人力派遣,同時實現海上犯罪的預防和提高環境保護的意識。
zh_TW
dc.description.abstractCrime prediction has become an important issue in recent years as it helps governments maintain social security. With the maturity of deep learning and the rise of graph neural networks, more researchers have been studying this field, employing various methods to enhance prediction accuracy. However, current research is limited to crime prediction on land, neglecting the significance of preventing maritime crimes. Due to the limited human resources and a broader scope, maritime crime prediction has become challenging.

In this study, we propose a novel spatial-temporal graph neural network model called ST-AAGAT. This model aims to identify spatial correlations through graph neural networks and leverage the Autoformer architecture to find the periodicity of crime. After that, we combine temporal and spatial patterns to predict the crime occurrence probability from time series data. We conducted experiments on maritime crime datasets with various aspects, and the results demonstrated that ST-AAGAT outperformed other models. Through this research, we hope to assist the coast guard administration in deploying resources more efficiently, preventing maritime crimes, and raising awareness for environmental protection.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:40:11Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T17:40:11Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements i
摘要 ii
Abstract iii
Contents iv
List of Figures vi
List of Tables vii
Chapter 1 Introduction. . .1
1.1 Background and Motivation . . . 1
1.2 Objectives . . . 3
1.3 Paper Organization . . .5
Chapter 2 Related Works. . . 6
2.1 Time Series Forecasting . . . 6
2.2 Graph Neural Networks . . .7
2.3 Spatial-Temporal Graph Neural Networks . . . 8
2.4 Crime Prediction . . . . 10
Chapter 3 Methodology. . .12
3.1 Task Definition . . . 12
3.2 Model Overview . . . 13
3.3 Graph Generation Module . . . 14
3.3.1 Spatial Graph . . . 14
3.3.2 Dynamic Time Warping Graph . . . 15
3.3.3 Adaptive Graph . . . 15
3.4 GAT Layer . . . 16
3.5 NAPL Layer . . . 17
3.6 Residual Connection and Graph Concatenation . . . 18
3.7 Embedding Layer . . . 19
3.8 Autoformer Module . . . 19
3.9 Gated Fusion Module . . . 22
Chapter 4 Experiments . . . 23
4.1 Dataset . . . 23
4.2 Baseline Models . . . 26
4.3 Experimental Results . . . 28
4.3.1 The Impact of Varying Number of Nodes . . .28
4.3.2 The Impact of Different Time Sequence Lengths . . . 30
4.3.3 Results of Different Prediction Lengths . . . 33
4.3.4 The Impact of Temporal on Classification Performance . . . 37
4.4 Ablation Study . . . 38
Chapter 5 Conclusions. . . 40
References. . . 42
-
dc.language.isoen-
dc.subject時間序列預測zh_TW
dc.subjectAutoformerzh_TW
dc.subject海上犯罪預測zh_TW
dc.subject時空圖神經網絡zh_TW
dc.subjectspatial-temporal GNNen
dc.subjectMaritime crime predictionen
dc.subjectAutoformeren
dc.subjecttime series modelen
dc.title基於時空圖神經網絡之海上犯罪預測zh_TW
dc.titleMaritime Crime Prediction with Spatial-Temporal Graph Neural Networken
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳建錦;林俊叡zh_TW
dc.contributor.oralexamcommitteeChien-Chin Chen;June-Ray Linen
dc.subject.keyword海上犯罪預測,時空圖神經網絡,Autoformer,時間序列預測,zh_TW
dc.subject.keywordMaritime crime prediction,spatial-temporal GNN,Autoformer,time series model,en
dc.relation.page45-
dc.identifier.doi10.6342/NTU202300954-
dc.rights.note未授權-
dc.date.accepted2023-06-08-
dc.contributor.author-college管理學院-
dc.contributor.author-dept資訊管理學系-
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
4.17 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved