Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90048
Title: 微潘寧阱陣列離子阱系統的冷卻和位元閘設計
Cooling and Gate Design of Trapped Ions in a Micro-Penning Trap Array
Authors: 曹以琳
Yi-Lin Tsao
Advisor: 林俊達
Guin-Dar Lin
Keyword: 離子阱,量子計算,潘寧阱,基態冷卻,兩量子位元閘,
Trapped ion,Quantum computing,Penning trap,Ground-state cooling,Two-qubit gate,
Publication Year : 2023
Degree: 碩士
Abstract: 離子阱系統由於其相當長的相關時間以及同種的離子的一致性,在量子計算領域中展現了其高度的可行性和可靠性。然而糾纏大量的離子量子位元依然是個重大的挑戰。近幾年來,提出了一種被稱為微潘寧阱陣列的方案,有望突破傳統方法的限制。在這篇論文中,我們首先展示微潘寧阱陣列的基本機制,並接著著重於其在基態冷卻和實現兩量子位元閘的獨特特性。在基態冷卻部分,我們發現微潘寧阱陣列提供了獨特的優勢。即便系統從蘭姆-迪克區域外開始冷卻,也能在不遇到居量束縛的情況下實現基態冷卻。我們還利用微潘寧阱陣列能個別離子的調控軸向頻率的能力,以簡化與兩量子位元閘有關的運動並使保真度不增加超過10−2。因此,兩量子位元閘的複雜性和雷射功率需求可以被大大降低。我們的發現表明,微潘寧阱陣列在量子計算上展現了相當的潛力。
Trapped ion system represents a highly promising and viable platform for quantum computing due to their long coherence time and the uniformity exhibited by ions of the same species. However, entangling a large number of ion qubits remains a significant challenge in this domain. In recent years, a novel approach called the micro-Penning trap array has been proposed as a potential solution to overcoming some of the limitations encountered in conventional schemes.
In this thesis, we first demonstrate the fundamental mechanics of the micro-Penning trap array. We then focus on its unique properties in the domain of ground-state cooling and the implementation of two-qubit gates. Regarding ground state cooling, we discover that the micro-Penning trap array offers a distinct advantage of enabling ground-state cooling without encountering population trapping issues, even when the system initiates cooling outside the Lamb-Dicke regime. Additionally, we utilize the capability of individually modulating axial frequency for each ion within the micro-Penning trap array to simplify the associated motion in two-qubit gates without increasing infidelity more than 10−2. As a result, the complexity and laser power requirements of the two-qubit gate pulse can be significantly reduced. Our discoveries suggest that the micro-Penning trap system exhibits great potential for quantum computing.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90048
DOI: 10.6342/NTU202302436
Fulltext Rights: 同意授權(全球公開)
Appears in Collections:物理學系

Files in This Item:
File SizeFormat 
ntu-111-2.pdf7.08 MBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved