請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90048完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林俊達 | zh_TW |
| dc.contributor.advisor | Guin-Dar Lin | en |
| dc.contributor.author | 曹以琳 | zh_TW |
| dc.contributor.author | Yi-Lin Tsao | en |
| dc.date.accessioned | 2023-09-22T17:11:59Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-09-22 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-11 | - |
| dc.identifier.citation | [1] P.W. Shor. Algorithms for quantum computation: discrete logarithms and factoring. In Proceedings 35th Annual Symposium on Foundations of Computer Science, pages 124–134, 1994.
[2] J. I. Cirac and P. Zoller. Quantum computations with cold trapped ions. Phys. Rev. Lett., 74:4091–4094, May 1995. [3] R. Blatt and D. Wineland. Entangled states of trapped atomic ions. Nature, 453:1008–1015, June 2008. [4] P. Wang, C.Y. Luan, and M. Qiao et al. Single ion qubit with estimated coherence time exceeding one hour. Nat. Commun., 12, January 2021. [5] T. P. Harty, D. T. C. Allcock, C. J. Ballance, L. Guidoni, H. A. Janacek, N. M. Linke, D. N. Stacey, and D. M. Lucas. High-fidelity preparation, gates, memory, and readout of a trapped-ion quantum bit. Phys. Rev. Lett., 113:220501, Nov 2014. [6] C. J. Ballance, T. P. Harty, N. M. Linke, M. A. Sepiol, and D. M. Lucas. High fidelity quantum logic gates using trapped-ion hyperfine qubits. Phys. Rev. Lett., 117:060504, Aug 2016. [7] Wolfgang Paul. Electromagnetic traps for charged and neutral particles. Rev. Mod. Phys., 62:531–540, Jul 1990. [8] D. J. Berkeland, J. D. Miller, J. C. Bergquist, W. M. Itano, and D. J. Wineland. Minimization of ion micromotion in a Paul trap. Journal of Applied Physics, 83(10):5025– 5033, 05 1998. [9] M. Brownnutt, M. Kumph, P. Rabl, and R. Blatt. Ion-trap measurements of electricfield noise near surfaces. Rev. Mod. Phys., 87:1419–1482, Dec 2015. [10] D. Kielpinski, C. Monroe, and D. J. Wineland. Architecture for a large-scale ion-trap quantum computer. Nature, 417(6890):709–711, Jun 2002. [11] J. M. Pino, J. M. Dreiling, C. Figgatt, J. P. Gaebler, S. A. Moses, M. S. Allman, C. H. Baldwin, M. Foss-Feig, D. Hayes, K. Mayer, C. Ryan-Anderson, and B. Neyenhuis. Demonstration of the trapped-ion quantum ccd computer architecture. Nature, 592(7853):209–213, Apr 2021. [12] D. Porras and J. I. Cirac. Quantum manipulation of trapped ions in two dimensional coulomb crystals. Phys. Rev. Lett., 96:250501, Jun 2006. [13] Anthony M. Polloreno, Ana Maria Rey, and John J. Bollinger. Individual qubit addressing of rotating ion crystals in a penning trap. Phys. Rev. Res., 4:033076, Jul 2022. [14] S. Jain, J. Alonso, M. Grau, and J. P. Home. Scalable arrays of micro-penning traps for quantum computing and simulation. Phys. Rev. X, 10:031027, Aug 2020. [15] Klaus Blaum. Cyclotron frequency in a penning trap. https://www.physi.uni-heidelberg.de/Einrichtungen/FP/anleitungen/F47.pdf, 2022. Accessed: 2022-10-18. [16] H. Häffner, C.F. Roos, and R. Blatt. Quantum computing with trapped ions. Physics Reports, 469(4):155–203, 2008. [17] M.A. Nielsen and I.L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, 2010. [18] Adriano Barenco, Charles H. Bennett, Richard Cleve, David P. DiVincenzo, Norman Margolus, Peter Shor, Tycho Sleator, John A. Smolin, and Harald Weinfurter. Elementary gates for quantum computation. Phys. Rev. A, 52:3457–3467, Nov 1995. [19] Anders Sørensen and Klaus Mølmer. Quantum computation with ions in thermal motion. Phys. Rev. Lett., 82:1971–1974, Mar 1999. [20] Anders Sørensen and Klaus Mølmer. Entanglement and quantum computation with ions in thermal motion. Phys. Rev. A, 62:022311, Jul 2000. [21] G.J. Milburn, S. Schneider, and D.F.V. James. Ion trap quantum computing with warm ions. Fortschritte der Physik, 48(9-11):801–810, 2000. [22] Lowell S. Brown and Gerald Gabrielse. Geonium theory: Physics of a single electron or ion in a penning trap. Rev. Mod. Phys., 58:233–311, Jan 1986. [23] T.W. Hänsch and A.L. Schawlow. Cooling of gases by laser radiation. Optics Communications, 13(1):68–69, 1975. [24] D. J. Wineland, R. E. Drullinger, and F. L. Walls. Radiation-pressure cooling of bound resonant absorbers. Phys. Rev. Lett., 40:1639–1642, Jun 1978. [25] C. Monroe, D. M. Meekhof, B. E. King, S. R. Jefferts, W. M. Itano, D. J. Wineland, and P. Gould. Resolved-sideband raman cooling of a bound atom to the 3d zero-point energy. Phys. Rev. Lett., 75:4011–4014, Nov 1995. [26] H. F. Powell, D. M. Segal, and R. C. Thompson. Axialization of laser cooled magnesium ions in a penning trap. Phys. Rev. Lett., 89:093003, Aug 2002. [27] P. J. Ungar, D. S. Weiss, E. Riis, and Steven Chu. Optical molasses and multilevel atoms: theory. J. Opt. Soc. Am. B, 6(11):2058–2071, Nov 1989. [28] Ch. Roos, Th. Zeiger, H. Rohde, H. C. Nägerl, J. Eschner, D. Leibfried, F. Schmidt-Kaler, and R. Blatt. Quantum state engineering on an optical transition and decoherence in a paul trap. Phys. Rev. Lett., 83:4713–4716, Dec 1999. [29] P. A. Barton, C. J. S. Donald, D. M. Lucas, D. A. Stevens, A. M. Steane, and D. N. Stacey. Measurement of the lifetime of the 3d2D5/2 state in 40ca+. Phys. Rev. A, 62:032503, Aug 2000. [30] Jürgen Eschner, Giovanna Morigi, Ferdinand Schmidt-Kaler, and Rainer Blatt. Laser cooling of trapped ions. J. Opt. Soc. Am. B, 20(5):1003–1015, May 2003. [31] D. Leibfried, R. Blatt, C. Monroe, and D. Wineland. Quantum dynamics of single trapped ions. Rev. Mod. Phys., 75:281–324, Mar 2003. [32] David Borwein, Jonathan M. Borwein, and Richard E. Crandall. Effective laguerre asymptotics. SIAM Journal on Numerical Analysis, 46(6):3285–3312, 2008. [33] J. F. Goodwin, G. Stutter, R. C. Thompson, and D. M. Segal. Resolved-sideband laser cooling in a penning trap. Phys. Rev. Lett., 116:143002, Apr 2016. [34] G. Poulsen, Y. Miroshnychenko, and M. Drewsen. Efficient ground-state cooling of an ion in a large room-temperature linear paul trap with a sub-hertz heating rate. Phys. Rev. A, 86:051402, Nov 2012. [35] Shi-Liang Zhu, C. Monroe, and L.-M. Duan. Arbitrary-speed quantum gates within large ion crystals through minimum control of laser beams. Europhysics Letters, 73(4):485, jan 2006. [36] J. P. Gaebler, T. R. Tan, Y. Lin, Y. Wan, R. Bowler, A. C. Keith, S. Glancy, K. Coakley, E. Knill, D. Leibfried, and D. J. Wineland. High-fidelity universal gate set for 9Be+ ion qubits. Phys. Rev. Lett., 117:060505, Aug 2016. [37] Da An, Alberto M. Alonso, Clemens Matthiesen, and Hartmut Häffner. Coupling two laser-cooled ions via a room-temperature conductor. Phys. Rev. Lett., 128:063201, Feb 2022. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90048 | - |
| dc.description.abstract | 離子阱系統由於其相當長的相關時間以及同種的離子的一致性,在量子計算領域中展現了其高度的可行性和可靠性。然而糾纏大量的離子量子位元依然是個重大的挑戰。近幾年來,提出了一種被稱為微潘寧阱陣列的方案,有望突破傳統方法的限制。在這篇論文中,我們首先展示微潘寧阱陣列的基本機制,並接著著重於其在基態冷卻和實現兩量子位元閘的獨特特性。在基態冷卻部分,我們發現微潘寧阱陣列提供了獨特的優勢。即便系統從蘭姆-迪克區域外開始冷卻,也能在不遇到居量束縛的情況下實現基態冷卻。我們還利用微潘寧阱陣列能個別離子的調控軸向頻率的能力,以簡化與兩量子位元閘有關的運動並使保真度不增加超過10−2。因此,兩量子位元閘的複雜性和雷射功率需求可以被大大降低。我們的發現表明,微潘寧阱陣列在量子計算上展現了相當的潛力。 | zh_TW |
| dc.description.abstract | Trapped ion system represents a highly promising and viable platform for quantum computing due to their long coherence time and the uniformity exhibited by ions of the same species. However, entangling a large number of ion qubits remains a significant challenge in this domain. In recent years, a novel approach called the micro-Penning trap array has been proposed as a potential solution to overcoming some of the limitations encountered in conventional schemes.
In this thesis, we first demonstrate the fundamental mechanics of the micro-Penning trap array. We then focus on its unique properties in the domain of ground-state cooling and the implementation of two-qubit gates. Regarding ground state cooling, we discover that the micro-Penning trap array offers a distinct advantage of enabling ground-state cooling without encountering population trapping issues, even when the system initiates cooling outside the Lamb-Dicke regime. Additionally, we utilize the capability of individually modulating axial frequency for each ion within the micro-Penning trap array to simplify the associated motion in two-qubit gates without increasing infidelity more than 10−2. As a result, the complexity and laser power requirements of the two-qubit gate pulse can be significantly reduced. Our discoveries suggest that the micro-Penning trap system exhibits great potential for quantum computing. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:11:59Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-22T17:11:59Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Contents
Page Acknowledgements i 摘要 iii Abstract v Contents vii List of Figures xi List of Tables xvii Chapter 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Penning Traps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Quantum Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3.1 Cirac-Zoller Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3.2 Mølmer-Sørenson Gates . . . . . . . . . . . . . . . . . . . . . . . 7 1.3.3 Geometric Phase Gates Driven by Spin-Dependent Forces . . . . . 9 1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Chapter 2 Dynamics of Penning Traps 13 2.1 Single Ion Dynamics in a Penning Trap . . . . . . . . . . . . . . . . 13 2.1.1 Classical Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.2 Quantized Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1.3 Rotating Frame Perspective . . . . . . . . . . . . . . . . . . . . . . 17 2.2 Micro-Penning Trap Array . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.1 Normal Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.2 Equilibrium Position Shift . . . . . . . . . . . . . . . . . . . . . . 21 2.3 Doppler Cooling of Penning Trapped Ions . . . . . . . . . . . . . . . 24 2.3.1 Doppler Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3.2 Issues with Magnetron Modes and Axialization Field . . . . . . . . 25 2.3.3 Overall Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.3.4 Possible Cooling Limit . . . . . . . . . . . . . . . . . . . . . . . . 30 2.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Chapter 3 Sideband Cooling 33 3.1 Resolved Sideband Cooling . . . . . . . . . . . . . . . . . . . . . . 33 3.1.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.1.2 Population Trapping . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2 Sideband Cooling in a Micro-Penning Trap Array . . . . . . . . . . . 38 3.2.1 Motional Frequency Clustering . . . . . . . . . . . . . . . . . . . . 38 3.2.2 Approximate Approach . . . . . . . . . . . . . . . . . . . . . . . . 38 3.3 Cooling Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.3.1 Heating Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.3.2 Estimation of Cooling Limit . . . . . . . . . . . . . . . . . . . . . 46 3.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Chapter 4 Gate Design 49 4.1 Gate Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.1.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.1.2 Transverse Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2 Pulse Shaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Chapter 5 Conclusion 57 References 59 | - |
| dc.language.iso | en | - |
| dc.subject | 離子阱 | zh_TW |
| dc.subject | 潘寧阱 | zh_TW |
| dc.subject | 量子計算 | zh_TW |
| dc.subject | 基態冷卻 | zh_TW |
| dc.subject | 兩量子位元閘 | zh_TW |
| dc.subject | Quantum computing | en |
| dc.subject | Penning trap | en |
| dc.subject | Ground-state cooling | en |
| dc.subject | Trapped ion | en |
| dc.subject | Two-qubit gate | en |
| dc.title | 微潘寧阱陣列離子阱系統的冷卻和位元閘設計 | zh_TW |
| dc.title | Cooling and Gate Design of Trapped Ions in a Micro-Penning Trap Array | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 張銘顯;王喬萱 | zh_TW |
| dc.contributor.oralexamcommittee | Ming-Shien Chang;Chiao-Hsuan Wang | en |
| dc.subject.keyword | 離子阱,量子計算,潘寧阱,基態冷卻,兩量子位元閘, | zh_TW |
| dc.subject.keyword | Trapped ion,Quantum computing,Penning trap,Ground-state cooling,Two-qubit gate, | en |
| dc.relation.page | 63 | - |
| dc.identifier.doi | 10.6342/NTU202302436 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-08-12 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 物理學系 | - |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 7.08 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
