Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90028
標題: 以機器學習方法預測颱風生成及其SHAP詮釋
Prediction of Tropical Cyclogenesis Based on Machine Learning Methods and its SHAP interpretation
作者: 呂智樂
Loi Chi Lok
指導教授: 吳俊傑
Chun-Chieh Wu
共同指導教授: 梁禹喬
Yu-Chiao Liang
關鍵字: 熱帶氣旋,熱帶氣旋生成,機器學習,SHAP值,
Tropical Cyclones,Tropical Cyclone Genesis,Machine Learning,SHAP values,
出版年 : 2023
學位: 碩士
摘要: 摘要
由於缺少統一的理論,預測熱帶氣旋生成一直都是相當困難的研究議題。目前實作主要用動力模式預測熱帶氣旋生成,但機器學習方式最近被提出可作為低成本之替代品,能活用大量再分析資料。這份研究用再分析資料中的大氣及海洋變數,訓練了隨機森林、支持向量機、和神經網絡三個機器學習模型,以預測24小時內熱帶擾動生成能否發展為熱帶氣旋。機器學習模型總體表現不俗,f1-分數達0.8,可比擬前人研究。召回率(約0.9)普遍比精確率(約0.7)高。作業用分析資料則進一步用來測試模型實用性。
其後,SHAP值分析發現中層(500百帕)渦度是影響熱帶氣旋在24小時內生成的最關鍵因素。風切及渦管傾斜也有一定重要性。敏感度測試確認了中層渦度及傾斜比起低層的更重要。此結果鼓勵更多物理模式實驗探討中層動力如何引致熱帶氣旋生成。SHAP值也增加了機器學習模型的可解釋性。本研究以颱風哈隆為例,展示各變數對其生成預測機率之影響。如此可以增加機器學習模型的可靠度,並提升熱帶氣旋生成預警之準確度。
最後,本論文提出目前以機器學習方式預測熱帶氣旋生成的一些問題。其中之一為:忽略熱帶擾動於預測期間外生成的樣本。同時,亦提出針對各問題未來研究的可改善方向。
Abstract
Predicting Tropical Cyclone Genesis (TCG) events has been a challenging research topic due to a lack of conclusive theory which unifies different hypotheses about TCG mechanisms. In practice, dynamical models are used to forecast TCG occurrence, but given some of its limitations in recent years machine learning has been proposed as an alternative low-cost approach that can utilize the abundance of reanalysis data. In this study, we attempt to train three machine learning models with varying complexity: Random Forest, Support Vector Machine, and Artificial Neural Network, by feeding various atmospheric and oceanic, dynamic and thermodynamic variables extracted from reanalysis data, to predict cyclogenesis at a forecast lead time of 24 hours for candidate tropical disturbances, identified by an optimized Kalman Filter algorithm. The overall performance is competent in terms of the f1-scores (~0.8) compared to previous researches of the same kind, with recalls (~0.9) generally higher than precisions (~0.7). Operational analysis data is used to further verify the practicality of the models.
An assessment by SHapley Additive exPlanations (SHAP) values reveals that mid-level (500 hPa) vorticity is the most influential factor in deriving the genesis probability at the lead time of 24 hours. Wind shear and tilting are found to possess a considerable level of importance as well. A sensitivity test is done to reaffirm the role of mid-level vorticity and tilting compared to the lower-level ones. These results encourage further experiments that use physical models to explore the dynamical, mid-level pathway to TCG. Nevertheless, some of the thermodynamic variables are also influential, with outer core humidity becoming significant when the forecast lead time is changed to 48 hours. Another usage of SHAP values in this work is providing extra interpretability for the machine learning models, by listing out the contribution of each feature to the output genesis probability, illustrated by a case study of Typhoon Halong. This increases their reliability and forecasters can take advantage of such information to issue tropical cyclone formation warnings more accurately.
Finally, several caveats of current machine learning applications in TCG, including this work, are discussed. One of the main problems is the negligence of presumably negative samples from developing tropical disturbances that only reaches tropical cyclone status long after the required forecast lead time. Several potential improvements for future research are suggested correspondingly.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90028
DOI: 10.6342/NTU202303630
全文授權: 同意授權(全球公開)
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf2.25 MBAdobe PDF檢視/開啟
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved