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Abstract 

Predicting Tropical Cyclone Genesis (TCG) events has been a challenging 

research topic due to a lack of conclusive theory which unifies different hypotheses 

about TCG mechanisms. In practice, dynamical models are used to forecast TCG 

occurrence, but given some of its limitations in recent years machine learning has been 

proposed as an alternative low-cost approach that can utilize the abundance of 

reanalysis data. In this study, we attempt to train three machine learning models with 

varying complexity: Random Forest, Support Vector Machine, and Artificial Neural 

Network, by feeding various atmospheric and oceanic, dynamic and thermodynamic 

variables extracted from reanalysis data, to predict cyclogenesis at a forecast lead time 

of 24 hours for candidate tropical disturbances, identified by an optimized Kalman 

Filter algorithm. The overall performance is competent in terms of the f1-scores (~0.8) 

compared to previous researches of the same kind, with recalls (~0.9) generally higher 

than precisions (~0.7). Operational analysis data is used to further verify the practicality 

of the models.  

An assessment by SHapley Additive exPlanations (SHAP) values reveals that mid-

level (500 hPa) vorticity is the most influential factor in deriving the genesis probability 

at the lead time of 24 hours. Wind shear and tilting are found to possess a considerable 

level of importance as well. A sensitivity test is done to reaffirm the role of mid-level 

vorticity and tilting compared to the lower-level ones. These results encourage further 

experiments that use physical models to explore the dynamical, mid-level pathway to 

TCG. Nevertheless, some of the thermodynamic variables are also influential, with 

outer core humidity becoming significant when the forecast lead time is changed to 48 
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hours. Another usage of SHAP values in this work is providing extra interpretability 

for the machine learning models, by listing out the contribution of each feature to the 

output genesis probability, illustrated by a case study of Typhoon Halong. This 

increases their reliability and forecasters can take advantage of such information to 

issue tropical cyclone formation warnings more accurately.  

Finally, several caveats of current machine learning applications in TCG, 

including this work, are discussed. One of the main problems is the negligence of 

presumably negative samples from developing tropical disturbances that only reaches 

tropical cyclone status long after the required forecast lead time. Several potential 

improvements for future research are suggested correspondingly.  

Keywords: Tropical Cyclones, Tropical Cyclone Genesis, Machine Learning, SHAP 

values 

Disclaimer: The major portion of this research work has been submitted as a paper 

(Loi et al., 2023) and is currently under review in AGU Journal of Advances in 

Modeling Earth Systems (JAMES). 
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摘要 

由於缺少統一的理論，預測熱帶氣旋生成一直都是相當困難的研究議題。目

前實作主要用動力模式預測熱帶氣旋生成，但機器學習方式最近被提出可作為低

成本之替代品，能活用大量再分析資料。這份研究用再分析資料中的大氣及海洋

變數，訓練了隨機森林、支持向量機、和神經網絡三個機器學習模型，以預測 24

小時內熱帶擾動生成能否發展為熱帶氣旋。機器學習模型總體表現不俗，f1-分數

達 0.8，可比擬前人研究。召回率（約 0.9）普遍比精確率（約 0.7）高。作業用

分析資料則進一步用來測試模型實用性。 

其後，SHAP值分析發現中層（500百帕）渦度是影響熱帶氣旋在 24小時內

生成的最關鍵因素。風切及渦管傾斜也有一定重要性。敏感度測試確認了中層渦

度及傾斜比起低層的更重要。此結果鼓勵更多物理模式實驗探討中層動力如何引

致熱帶氣旋生成。SHAP值也增加了機器學習模型的可解釋性。本研究以颱風哈

隆為例，展示各變數對其生成預測機率之影響。如此可以增加機器學習模型的可

靠度，並提升熱帶氣旋生成預警之準確度。 

最後，本論文提出目前以機器學習方式預測熱帶氣旋生成的一些問題。其中

之一為：忽略熱帶擾動於預測期間外生成的樣本。同時，亦提出針對各問題未來

研究的可改善方向。 
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Chapter 1 

Introduction 

1.1. Review of Current Machine Learning Works on TCG 

The difficulties of predicting Tropical Cyclone Genesis (TCG) can be attributed 

to a variety of reasons, including a lack of surface observational data over oceanic 

regions, the subjectivity of the Dvorak method (IWTC-9), and the stochastic nature of 

tropical cyclone (TC) convection (Wang, 2018). One traditional approach to the 

problem of TCG is exploring dynamical forecast. However, the approach comes with 

issues such as an incomplete representation of complex physical processes, a resolution 

too coarse to explicitly resolve processes of sub-grid scales, as well as a substantial 

computational cost (Thatcher and Pu, 2013; Chen et al., 2020). There are also earlier 

works of traditional statistical analysis of TCG (Fu et al., 2012; Peng et al., 2012), but 

they are only diagnostic and hence unable to make predictions. The method of ensemble 

forecast was suggested to tackle these issues, and has since gained popularity in 

operational uses, as it can overcome the weaknesses of deterministic forecasts and 

provide uncertainty information useful for risk assessment (Titley et al., 2019). 

Nevertheless, an ensemble forecast requires much more computational resources to 

perform, and thus Machine Learning (ML) methods have been proposed as an 

alternative that requires low computational cost as compared to other numerical models 

(Brecht and Bihlo, 2022; Qian et al., 2022). Machine learning models can also be 

regarded to be a kind of more sophisticated and powerful statistical methods compared 

to the simpler ones like a logistic regression in the early years. 

  

Recent advances in utilizing ML in the area of TCG have been summarized in 
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Chen et al. (2020), and some of the relevant works (Zhang et al., 2015; Zhang et al., 

2019; Zhang et al., 2022) mentioned there are to be discussed below. In Zhang et al. 

(2015), the 850 hPa vorticity field was examined to extract tropical disturbances, and a 

decision tree algorithm was developed based on six classification rules of dynamic and 

thermodynamic variables that were considered to be potentially influential in TCG. In 

particular, the vorticity at 800 hPa has to be greater than 4.2 × 10-5 s-1 and sea surface 

temperature (SST) has to be higher than 28.2 °C. They achieved an accuracy of 84.6% 

in forecasting TCG events. There was a clear visualization by the tree diagram but no 

feature importance or interpretation was given. 

 

Meanwhile, Zhang et al. (2019) looked for Mesoscale Convective Systems (MCSs) 

from a satellite dataset (Huang et al. 2018) and included well-established indices like 

Genesis Potential Index (GPI) and Potential Intensity (PI) in addition to other 

environmental variables and properties of MCSs (e.g. the lowest/average brightness 

temperature, and the area coverage). They used a variety of ML algorithms, including 

the Decision Tree, k-Nearest Neighbors (KNN), Quadratic Discriminant Analysis 

(QDA), Support Vector Machine (SVM), Random Forest, and ADABoost. Different 

models were trained for different forecast lead times, including 6, 12, 24 and 48 hours. 

The ADABoost with a 6-hr lead time model yielded a stunning F1-score of 97.2%. 

However, the feature importance was expressed by Mean Decrease Impurity 

Importance (MDI). MDI was dependent on the tree-based nature of algorithms and not 

all of the models could be explained via MDI. Moreover, MDI only gave each variable 

a single scalar importance, and hence cannot provide further information about the 

detailed roles of variables in the process of tropical cyclogenesis. 
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Finally, Zhang et al. (2022) took ERA5 and Gridded Satellite (GRIDSAT) data to 

train a Convolutional Neural Network (CNN) model that gave a probabilistic forecast 

on TCG. The input variables were relative vorticity, relative humidity, wind speed, 

wind direction, geopotential height, mean sea level pressure (SLP), as well as infrared 

window (IRWIN) channel brightness temperature, sampled over a box domain of 

1000×1000 km centered at the disturbance. They generated probabilistic forecasts at 

different lead times according to the statistics of output probabilities of the CNN, as 

compared against the actual fraction of genesis events at those lead times. They also 

carried out probability bias analysis by constructing composites of different variables 

in the cases of “best hits” and “worst misses”. Some findings were that the “best hits” 

had a closed geopotential contour and a positive vorticity anomaly near the center in 

the mid-level, while those were not present in the “worst misses”. Finally, they 

discussed some real-life TC cases and how the model could be applied in these 

situations. Their probability of detection was 97.1% and the false alarm rate was 20.3%. 

Nevertheless, using CNN makes the feature patterns highly compressed, thus making 

the interpretation of the model’s result difficult. Table 1.1 summarizes their works. The 

merits include clear visualization, feature importance information and high 

performance. A goal of this work is to integrate the advantages and address the 

shortcomings in these three papers. 

 

1.2. Review of Physical Factors and Pathways Affecting TCG 

1.2.1. Dynamical Variables 

To create a physically sensible ML model on TCG which is compatible to known 

governing processes and laws, it is essential to provide as many input variables that 
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bear a physical relation to TCG as possible. Among dynamical variables, vertical wind 

shear is perhaps one of the most studied topics in the area of TCG. Tao and Zhang (2014) 

and Finocchio et al. (2016) discussed the tilting and precession of the vortex tube at the 

initial stage of TCG under wind shear. Only after realignment of the vortex tube can 

the disturbance start to intensify. If the wind shear is too strong, the tilting will not be 

restored and the development cannot begin. Another impact of the vertical wind shear 

is the ventilation effect proposed by Tang and Emanuel (2010, 2012) where mid-level 

dry air (i.e. with a low equivalent potential temperature) intrudes the inner core through 

wind shear and the ensuing evaporation of rain leads to downdrafts of the low-entropy 

air into the boundary layer. This disturbs the TC energy cycle and hampers its growth. 

 

Another important dynamical factor is the mid-level circulation/vorticity, which is 

closely linked to the bottom-up theory of TCG that developed by Montgomery et al. 

(2006). The study of Typhoon Nuri (2008) by Raymond and López Carrillo (2011) 

revealed that an apparent closed mid-level circulation was seen at the 5 km level as Nuri 

became a tropical depression. At the same time, the vertical mass flux profile evolved 

into a more bottom-heavy one (see Fig. 5 in Raymond et al., 2014), marked by a 

strongly increasing upward mass transport below the mid-level that resulted in the low-

level spin-up and the intensification of Nuri. Raymond et al. (2011) proposed that a 

strong mid-level vortex is the key ingredient to such a bottom-heavy vertical mass flux 

profile. The first way that such a vertical mass flux profile contributes to TCG is by 

mass continuity which can cause an intense radial inflow and convergence of vorticity 

to spin up the low-level warm core vortex later. Another reason is that it reduces 

vertically integrated lateral export of moist entropy, raising the column‐integrated moist 

static energy and the saturation fraction to the point of criticality, triggering deep 
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convection. But it was noted that at the beginning, the mid-level circulation is 

accompanied by a low-level cold core due to the thermal wind relationship, instead of 

a warm core that is fully developed only after TCG. The emergence of a mid-level 

vortex with a warm(top)-cold(bottom) core couplet as TCG approaches is further 

confirmed by the simulations performed by Ge et al. (2013). 

 

Finally, the Okubo-Weiss parameter, being a measure of the degree of rotation 

relative to deformation, can be derived to assess how well the vortical flow of a 

disturbance is preserved, as in the paper of Dunkerton et al. (2009), which explores the 

Marsupial Paradigm. Basically, it is hypothesized that a quasi-closed Lagrangian 

“pouch” in some “Kelvin Cat's Eye” at the critical layer of easterly wave where the 

relative flow is effectively zero, would be able to protect the growing disturbance by 

retaining moisture and resisting environmental wind shear. The Okubo-Weiss 

parameter in this context, is then an evaluation of the effectiveness of the “pouch” 

protection against unfavorable factors to TCG. In general, the normalized Okubo-Weiss 

parameter is calculated as in Raymond et al. (2011). 

OW𝑁 =
𝜁𝑟

2 − 𝜎1
2 − 𝜎2

2

𝜁𝑟
2 + 𝜎1

2 + 𝜎2
2
 

where ζr, σ1, σ2 are relative vorticity, stretching deformation and shear deformation 

respectively. 

1.2.2. Thermodynamic Variables 

On the other hand, some of the thermodynamic variables that may play a role in 

TCG are column-integrated water vapor and hence convection/precipitation, SST and 

upper-level warm core. For water vapor, Wang and Hankes (2016) suggested that when 
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the Saturation Fraction (SF) reaches a critical threshold, exponential precipitation will 

be triggered. The positive feedback between convection and the low-level moisture 

convergence would then help sustain the disturbance, in a quasi-equilibrium state with 

a high precipitation rate and moderately high SF. This chain of events can be captured 

from multiple variables, such as the cloud brightness temperature that implies the 

strength of convective clusters. SST is a representative proxy for latent heat flux and 

ocean heat content, which are the energy source for the Carnot engine cycle proposed 

by Emanuel (1997), and also a favorable TCG environmental condition in Gray (1979). 

Last but not least, an upper-level warm core is a fundamental, indicative feature to any 

TC which continues to build up as the storm intensifies (Wang and Jiang, 2019). Kerns 

and Chen (2015) demonstrated that TCG occurs when subsidence warming erodes the 

lower-troposphere cool anomaly and superposes with the pre-existing mid-upper 

troposphere warm anomaly. This result is quite pertinent to the foregoing issue 

discussed of warm-cold core couplet, and that an upper-level warm core has to exist 

beforehand. 

 

In addition, as suggested by Tang and Emanuel (2010, 2012), the ventilation effect 

arises not only due to the sole existence of wind shear but also the presence of dry, low-

entropy air in the mid-level. They utilize a quantity known as the entropy deficit in the 

calculation of the ventilation index. This form of entropy deficit would be used as an 

indicator of the thermodynamic aspect of ventilation effect, or simply put, dryness, in 

the following analysis, independent of the actual, dynamical vertical wind shear. 

χ𝑚 =
𝑠𝑚

∗ − 𝑠𝑚

𝑠𝑆𝑆𝑇
∗ − 𝑠𝑏

 

χ, s are the non-dimensional entropy deficit and entropy. The subscripts m, b represent 
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mid-level (600 hPa) and boundary layer. The asterisk * means saturation value. The 

computation of s is based on the pseudo-adiabatic entropy formula from Bryan (2008), 

which is employed in Tang and Emanuel (2012) as well. 

  

1.3. Objectives of this Work 

The main goal of our work is to improve the prediction of TCG events, discerning 

developing/non-developing tropical disturbances, with ML as a supplement to 

conventional numerical models. It aims to integrate the merits from and deal with the 

issues raised by three aforementioned papers on TCG (Zhang et al., 2015; Zhang et al., 

2019; Zhang et al., 2021), which is to balance between having a satisfactory 

performance, and providing a clear visual interpretation of the feature’s importance. 

The forecast lead time of 24 hours is chosen for our machine learning models, because 

the current ensemble forecast uncertainty becomes increasingly large after 24 hours 

(Wang et al., 2020) and the Tropical Cyclone Formation Alert (TCFA) by the Joint 

Typhoon Warning Center (JTWC) is also valid only during the 24 hours after the 

issuing. We also aim to achieve the following two objectives in this study: first, to 

understand from a machine learning perspective, which are the most dominant factors 

for TCG, and compare them to earlier research to verify consistency; second, to explain 

and illustrate how different physical variables would lead to the bifurcation of 

development/non-development of disturbances, enhancing the interpretability of the 

model. 

  

The current chapter has summarized how ML had been applied to the study of 

TCG and outlined some background knowledge of TCG. Chapter 2 will depict the data 

used and the methodology. Chapter 3 will present the model results and interpretation. 
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In Chapter 4, some extensions and further testing of the model will be discussed, along 

with the inspection of a specific disturbance case (Typhoon Halong, 2014). Discussion 

and summary will be given in Chapters 5 and 6 respectively. 



doi:10.6342/NTU202303630

9 

 

Chapter 2 

Data and Methodology 

2.1. Data Used, Spatial Extent and Time Period of Study 

The European Centre for Medium-Range Weather Forecasts (ECMWF) 

Reanalysis v5 (ERA5, Hersbach et al., 2018a, 2018b) data with a spatial resolution of 

0.25×0.25 degrees are used to identify disturbances and extract the atmospheric 

variables used in the machine learning training process. Although the ERA5 data are 

available at an hourly frequency, the sampling is only done four times each day at an 

interval of six hours (00:00, 06:00, 12:00, 18:00 UTC). Meanwhile, SST, precipitation 

and the near 11 μm infrared brightness temperature are acquired from the Optimum 

Interpolation Sea Surface Temperature (OISST, Huang et al., 2020), Tropical Rainfall 

Measuring Mission (TRMM, Huffman et al., 2016) and NOAA Geostationary Satellite 

(GRIDSAT, Knapp et al., 2011) datasets, all of which have been re-gridded to the same 

spatial resolution of 0.25 degrees as the ERA5 data. Operational analysis data of 

atmospheric variables and precipitation from GFS is later used for further verification 

to check transferability. Despite the presence of finer 0.25-degree GFS data, we have 

selected the coarser version with a spatial resolution of 0.5 degrees because of a better 

accessibility. They are then interpolated to 0.25 degrees and sampled at the same 

interval of six hours like previously. Due to data availability at the time of writing, only 

the GFS data from 2021 is used. The regions to be investigated cover the Western North 

Pacific (WNP) and Central Pacific (CP) (0° - 25°N, 125°E - 165°W, Fig. 2.1). The time 

period covers June to September from 2003-2015, where the four-month period mostly 

coincides with the highest seasonal TC activity in WNP (Gao et al., 2020).  
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2.2. Disturbance Tracking Algorithm by Kalman Filter 

This study uses a Kalman filter (Saho, 2017) to detect and track cyclonic centers 

using the ERA5 850 hPa vorticity field. The vorticity field is smoothed by a Gaussian 

with a standard deviation of 2 degrees to reduce noise. The Kalman filter tracker is 

combined with the commonly used area-overlapping method in series (rather than two 

parallel procedures as in Huang et al., 2018). The detailed implementation of which, 

K2O Algorithm, is described below. The abbreviation K2O stands for “Kalman-to-

Overlapping”. At each time step, positive vorticity local maxima that have a vorticity 

of at least 5×10-6 s-1 are searched over the gridded data with the constraint that any 

weaker local maximum is discarded if it is less than 4 degrees away from some stronger 

local maxima to filter away those vorticity centers being absorbed. Once all such 

vorticity maxima are identified, they are ranked, arranged and iterated from the highest 

to lowest. At each iteration, the connected region around the local vorticity maximum 

where the constituent grids have vorticity values above 𝛼% of that maximum is marked 

and defined as a vorticity cluster. If the determined vorticity cluster spans a previous 

vorticity cluster in space, then it is discarded. Again, this is to remove weaker systems 

being heavily influenced by other stronger systems.  

  

After searching all the possible vorticity clusters, at the first time step, we initialize 

a Kalman Filter for each of them that tracks their vorticity-weighted center position. 

The Kalman filter has a state vector of 

𝐱t = (𝑦𝑡, 𝑥𝑡, 𝑣𝑡 , 𝑢𝑡)
𝑇 
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which is composed of the latitude (yt) and longitude (xt) of the vorticity-weighted center 

position, as well as the meridional (vt) and zonal velocity in degrees (ut) at the current 

time. The transition matrix is 

A = [

1 0 ∆𝑡 0
0 1 0 ∆𝑡
0 0 1 0
0 0 0 1

] 

Where the time step size 𝛥t is 0.25 days. The measurement matrix is 

H = [
1 0 0 0
0 1 0 0

] 

and the initial process covariance matrix is 

Q = σa
2

[
 
 
 
 
 
 
 
 
(∆𝑡)4

4
0

(∆𝑡)3

2
0

0
(∆𝑡)4

4
1 0
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]
 
 
 
 
 
 
 
 

 

with 𝜎a set to 16 degrees/day2. The initial measurement noise covariance matrix is 

R = 

[
 
 
 
(∆𝑡)2

2
0

0
(∆𝑡)2

2 ]
 
 
 

 

Then, at each future time step (t = k+1), each Kalman Filter will predict the movement 

of the old vorticity cluster center, represented by the blue patch in Fig. 2.2, which will 

have been tracked by the Kalman Filter at the last time step (t = k). It predicts the state 

vector by 

𝐱t+1 = A𝐱t 
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and forecasts the covariance matrix as 

Pt+1 = APtA
𝑇 + Q 

All old clusters at t = k are then displaced by their predicted motions, which is illustrated 

by the green patch in Fig. 2.2, that represents the would-be positions of the old clusters 

at t = k+1. They are compared to the real new vorticity clusters found in the way 

mentioned in the last paragraph at t = k+1, demonstrated by the red patch in Fig. 2.2. If 

there are M old clusters (green) offset by predicted movements and N new clusters (red), 

then there would be M×N comparisons that can be used to compute the fraction of 

overlapping by the formula below: 

Number of overlapped grids between old (green) and new cluster (red)

Number of grids in the old cluster (green)
 

Then, we use the Hungarian Algorithm (scipy.optimize.linear_sum_assignment in 

Python) that attempts to match each old cluster to a new cluster by maximizing the total 

overlapping between all old and new clusters. The minimum degree of overlapping is 

set to be 𝛾%, only above which the pair would be considered as a potential match. If an 

old cluster (t = k) at the last time step is matched to a new cluster (t = k+1) at the 

following time step, then they are considered the same disturbance and the Kalman 

Filter would read the new position to update its internal analysis position, passing the 

Kalman Filter itself to keep tracking the new vorticity cluster. The analysis step 

involves the update of the state vector and covariance matrix as follows. 

S = HPHT + R 

K = PHTS−1 

𝐱analysis = 𝐱forecast + K(𝐳 − H𝐱forecast) 

Panalysis = (I − KH)Pforecast 
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If no corresponding new cluster can be found for an old cluster, it would be 

considered to have dissipated, and the corresponding Kalman Filter would stop. The 

entire track of the decayed old cluster is then archived. New Kalman Filters will be 

initialized for the remaining new clusters that are not linked to any old cluster, and they 

will enter the tracking procedure starting from the next time step. This process is 

repeated and continued until the last time step. Only the tracked disturbances satisfying 

the requirements listed in the next paragraph would be withheld. It seems that setting 

𝛼=75 and 𝛾=15 is a good empirical choice, which allows most of the historical TCs to 

be successfully tracked without discontinuity. Or simply put, the single TC entity is not 

split into two separated tracks or considered as two different systems by the K2O 

algorithm. 

 

To filter out weak TC seeds, a detected tropical disturbance needs to have a 

lifetime of at least 3 days. Also, for at least 4 six-hourly time steps, it is required to be 

sufficiently strong such that its vorticity at 850 hPa is greater than 2×10-5 s-1. The 

vorticity field has been smoothed by a Gaussian filter with a standard deviation of 2 

degrees. These requirements are modified from those in Ikehata and Satoh (2021). A 

final criterion is the mean precipitation in a centered box of 5×5 degrees needs to exceed 

0.5 mm/hr for more than 4 time steps as well, in order to remove any dry vortex. The 

definition of a developing disturbance is simply reaching an intensity of 25 knots or 

above as recognized by Joint Typhoon Warning Center (JTWC). The time when this 

first happens is defined as the genesis time. Otherwise, it is non-developing. The 

International Best Track Archive for Climate Stewardship (IBTrACS), which contains 

the best track data by JTWC, are used for this purpose. Table 2.1 shows the numbers of 
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developing and non-developing disturbances, both of which having a balanced sample 

size coincidentally.  

 

To check the robustness of our tracking method, we also try the well-established 

Tempest Extremes tracker for reference, and find that our procedure can trace ~85% of 

the systems identified by Tempest Extremes. While there certainly exists a performance 

margin, we believe that the Kalman filter method is a simple yet adequately effective 

method. Also, while it may be surprising that the numbers of developing and non-

developing disturbances are similar at first, it is actually due to the stringent conditions 

placed on the disturbance seeds to be selected. Before applying the thresholds, the non-

developing cases are much more (about 5 times) than developing cases as one may have  

expected. 

2.3. Features Selection 

The 16 (14+2) variables used to train the ML models and how they are extracted 

are listed in Table 2.2. Apart from the criterion that they are physically related to TCG, 

each of them also has to satisfy the condition that the difference of the two probability 

distributions sampled between the developing and non-developing sets are statistically 

meaningful. This is confirmed by both the Student’s t-test and Kolmogorov-Smirnov 

test at 99% significance level (see Table 2.3). Two examples of such probability 

distributions (500 hPa vorticity and 500-850 hPa layer vertical wind shear) are 

displayed in Fig. 2.3. Nevertheless, two of the variables (denoted by the “+2”), entropy 

deficit (Chi) and instability index (I) are incorporated even though these two variables 

do not pass the 99% significant level. This is because they are viewed as important 

indicators of TC growth in certain literatures (Raymond et al., 2011; Raymond et al., 
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2014), and indeed improves the results considerably, which can be seen in Section 3.1. 

We further utilize these two statistical tests to refine the vertical levels or horizontal 

domains where the predictors are extracted through minimizing the computed p-values. 

The horizontal domains in which the predictors are computed is illustrated in Fig. 2.4. 

For developing cases, the variables are averaged in time from day -1 (24 hours) to day 

-1.5 (36 hours) before genesis to reduce possible transient noises. For non-developing 

cases, a similar time averaging of predictors is done between the moment when the 

disturbance reaches its maximal 850 hPa vorticity and half a day before the peak. 

2.4. Machine Learning Models Used and Training Details 

 Three Machine Learning models are employed in our study: Random Forest (Liaw 

and Wiener, 2002), Support Vector Machine (SVM, or SVC, C stands for Classification, 

Cortes and Vapnik, 1995), and Artificial Neural Network (ANN, Rumelhart et al., 

1985). The first two models usually output a definite True or False binary (developing 

or non-developing in terms of TCG) answer while the last one gives an estimate of 

genesis probability. Random Forest, being a tree-type algorithm, works simplistically 

through bisection but suffers (partly alleviated by its bagging nature) when the decision 

boundaries are supposed to be slanted or curved. SVM can handle non-linearity with 

the so-called “kernel trick”, often using the radial basis function kernel to map the data 

points to an infinite-dimensional space. However, the success of the kernel trick is not 

always guaranteed, and otherwise the dividing hypersurface may not separate the 

classes cleanly. ANN is the most complex one out of the three selected models. It has 

the most powerful potential yet quite prone to overfitting and other classes of training 

problems like dead neurons and vanishing gradient (Géron, 2019).  
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The time period of training set is chosen as 2003-2013, and the testing set is from 

the years of 2014-2015 (see Table 2.1 for the counts in the two sets of data). A stratified 

5-fold cross-validation for Random Forest and SVM, and a simple 80-20 validation for 

ANN, are executed in the training set when tuning the hyperparameters/architectures of 

the three models (see below), and also in a subsequent sensitivity test where predictors 

are added or removed. For each of the three models, the exactly same splitting of data 

points is kept throughout the testing (apart from Section 4.3 where the datasets are 

expanded). Particularly, for Random Forest and SVM, the procedure of grid search is 

applied. We have to choose two hyperparameters max_tree_depth and ccp_alpha in 

random forest, and one hyperparameter C, the regularization constant in SVC. Grid 

search works by cross-validating the model at each possible combination of 

hyperparameters and return the configurations that have the best score. For example, if 

we have k values of max_depth and l of ccp_alpha to select, then the grid search checks 

all the k*l possibilities, which is demonstrated in Fig. 2.5. The final optimal settings of 

hyperparameters for them are shown in Table 2.4, along with the architecture of the 

ANN model in Fig. 2.6. To evaluate the performance of the model, metrics including 

precision, recall and f1-score are calculated. Precision is the fraction of true positives 

to all positive predictions and recall is the fraction of true positives to all actual positives, 

while f1-score is the harmonic average (the reciprocal of the average of the reciprocals) 

of precision and recall. The higher the precision, the less the false alarms. The higher 

the recall, the less the misses. Since f1-score considers both precision and recall, it is 

high only if the previous two metrics are high (Zhang et al., 2019). These are 

demonstrated by the confusion matrix (a 2×2 contingency table split by actual and 

predicted True or False) in Table 2.5. 

2.5. Introduction of SHAP Values 



doi:10.6342/NTU202303630

17 

 

 To interpret the model results, SHAP values are utilized (Lundberg and Lee, 2017). 

SHAP values have been widely employed in the area of TC Rapid Intensification (e.g. 

Griffin et al. 2022). It represents the average marginal contribution of a feature, i.e. the 

mean difference in output between all constructed coalitions of variables that have the 

specific feature versus those without, estimated for a specific data sample. The detailed 

explanation can be found in Molnar (2022). The key formula of SHAP values is 

𝜑𝑖(𝑣) =  ∑
|𝑆|! (𝑁 − |𝑆| − 1)!

𝑁!
(𝑣(𝑆 ∪ {𝑖}) − 𝑣(𝑆))

𝑆⊆𝑁\{𝑖}

 

where 𝜑i is the SHAP value for the i-th variable, S is any possible coalition of features, 

v(S) is the output probability of the coalition S. N represents all variables and \{i} means 

except the i-th variable. There is one SHAP value for each feature in each sample, and 

it indicates how the value of the chosen feature in that sample affects the decision of 

the model: in the current TCG scenario, it is reflecting whether the contribution to the 

output genesis prediction of the physical variable, e.g. vorticity or SST, is 

positive/increasing or negative/decreasing. Refer to Fig. 2.7 for a simple made-up 

example for the computation of SHAP values. By examining the SHAP value 

distributions for each predictor, we can rank their importance, as would be seen in the 

next section. Often, a large SHAP value spread means the variable is crucial for the 

decision of the model. 
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Chapter 3 

Results and Interpretation 

3.1. Models Performance 

The performances of the three models are listed in Table 3.1. They all achieve high 

recalls and medium precisions, i.e. few misses but more false alarms, leading to decent 

f1-scores of around 77-82%. SVC and ANN have a better recall and hence a higher f1-

score due to the two more correct positives. The increased hit rate can ensure better 

safety precautions for approaching disturbances. Nevertheless, all three models are 

useful due to the fact that their training processes are independent from each other. It is 

because through comparing their predictions and the bases on which they perform such 

predictions, we may obtain useful insights. They are to be seen in the upcoming Section 

3.2. The performances when only the 14 variables that passes statistical tests are used, 

without the entropy deficit and instability index, is alternatively shown in Table 3.2 for 

reference. By comparison, it can be seen that the inclusion of the two additional 

variables lead to an increase in f1-scores in all three models by roughly 3-6%, which is 

not negligible, and support the foregoing decision to designate them as inputs. 

3.2. SHAP Values Patterns  

3.2.1. Beeswarm Plots 

The SHAP values of the three models computed over the test data are displayed in 

Fig. 3.1 below as the so-called “beeswarm” plots. As mentioned in the last paragraph 

of Section 2.5, the larger the spread of SHAP values (represented by dots in the plots) 

a variable has, the greater its mean absolute SHAP value (refer to Fig. 3.2) and the more 
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important the feature. To further elaborate, the magnitude of any (positive/negative) 

SHAP value (individual dot) represents the change (increase/decrease) in the predicted 

genesis probability caused by the feature value of that specific sample. An apparent 

common finding is that 500 hPa vorticity heavily dominates the prediction of TCG as 

its importance ranks the first among all three models. It is clear from the SHAP value 

distribution that when the vorticity at 500 hPa is large, indicated by the reddish dots far 

to the right, the SHAP values are largely positive and the predicted genesis probability 

substantially increases. When the mid-level vorticity is small, indicated by the bluish 

dots much to the left, the predicted chance of TCG decreases markedly. 

Meanwhile, other variables show no consistent patterns with regard to importance 

across the three models. Nevertheless, the ordering of variable importance aligns 

roughly with the magnitude of the p-values in the two initial statistical tests (see Table 

2.3). Namely, a smaller p-value and a greater statistical difference are correlated to a 

higher SHAP spread, except the additionally included Chi and I (“+2”). This shows that 

the SHAP results are reasonable. However, the more interesting findings would come 

from their difference or similarity in SHAP value patterns of some indicators. First, 

Tanomaly ranks the second in the random forest model and has an asymmetric SHAP 

value distribution skewed to the negative side, which is not found in the other two 

models. Low feature values have more pronounced reduction in SHAP values while 

high feature values display diminishing increases in SHAP values. It suggests the 

possibility of Tanomaly having some sort of upper saturation limit, and increasing it 

further beyond only marginally increases the genesis probability, similar to the concept 

of diminishing return, and which is like a necessary condition from the perspectives of 

the Random Forest model. This likely pertains to the fact that random forest builds up 

through binary separation, and in some top-level nodes, most disturbances that have a 
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weak warm core are easily discerned and discarded early. This makes physical sense, 

as an adequate warm core is the backbone of any TC, following Wang and Jiang (2019) 

that has been included in the introduction. The other two models do not rely on binary 

separation and this is probably why the importance of Tanomaly falls off in these two 

models. Entropy deficit (Chi) also has a similarly skewed SHAP distribution, where 

few cases lie to the very left negative side. These cases correspond to the scenario of 

severe dry air intrusion that hampers the convection. This helps reject some extreme 

negative cases, hence reducing false positives compared to the alternative experiment 

without the “+2” addition (Chi and I), despite them having a low overall SHAP 

importance. The same situation, with the relative sign of feature value reversed, occurs 

for tilt500 in all the three models. Finally, wind shear (ws) is also crucial, as it ranks 

second in SVC and ANN. As a factor impacted by wind shear, the degree of tilting is 

also quite relevant and will be considered in the upcoming composite analysis in section 

3.3.1. 

3.2.2. Dependence Plots 

Here, we further examine the dependence plots of 500 hPa vorticity and vertical 

wind shear which have just been found to be essential factors determining TCG 

according to the SHAP explanation, demonstrated in Fig. 3.3 and 3.4 respectively. The 

baseline of zero SHAP value is denoted by the orange horizontal line, and the nearby 

sample points along which the influence of the concerned feature on them is neutral. 

Note that the SHAP values of both 500 hPa vorticity and vertical wind shear vary quite 

monotonically, and hence we can loosely define an estimated threshold value for them 

as where the transition from negative to positive (or reverse) SHAP values happens, 

which is indicated by the green arrow in the plots. For 500 hPa vorticity (Fig. 3.3), such 
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transition mainly occurs near 20-25 × 10-6 s-1. Notice that the extracted 500 hPa vorticity 

comes from reanalysis data and has been preprocessed by a Gaussian smoother and may 

not accurately reflect the real atmospheric conditions, but it gives an approximate scale 

of magnitude for reference. To the right of this threshold, the models consider the 

stronger vorticity as producing a positive contribution to the predicted genesis 

probability. In contrast, to the left, the contribution of the weaker vorticity is negative. 

Similarly, for wind shear (Fig. 3.4), the models agree that a vertical wind shear of 

around 4-4.5 m s-1 is the turning point where it becomes increasingly detrimental to TC 

formation. However, it should be noted that these threshold values are close to the 

average of all data. This possibly suggests that, alongside the monotonic behavior of 

the computed SHAP values for these two variables, the effects on TCG by these two 

predictors are fairly linear, and the averages (black dotted vertical lines in Fig. 3.3 and 

3.4) are acting as a reference point. Moreover, the threshold may also be sensitive to 

how the predictors are extracted and calculated. 

3.3. Investigation of Dynamical Variables 

3.3.1. Shear-coordinate Composites 

To shed more light on the above findings, using the prediction of ANN, four shear-

coordinate composites of vorticity framed in a 2×2 contingency table are illustrated in 

Fig. 3.5. It can be seen that true positive cases have the strongest vorticity at both low-

level (850 hPa) and mid-level (500 hPa) and they are well-aligned with each other. 

These two conditions are known to be favorable for the TCG process as discussed in 

the introduction. But there is significant tilting in false positive samples even if the 

values of vorticity at the two levels are still somehow large. The vertical wind shear, on 

average, is also a bit higher in the false positive class. The downshear-left direction of 
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tilting is consistent with Tao and Zhang (2014) and Finocchio et al. (2016) where the 

same occurred at the initial times of their simulations. This shows that the model fails 

to reject negative cases when they have high vorticity that promises some growth 

potential but the tilting under vertical wind shear is unfavorable, disrupting the vortex 

tube, impeding convection, and hints otherwise. Lastly, there are only two false 

negative cases, which are too few to yield any statistically meaningful statement. 

We already know that 500 hPa vorticity plays an essential part in the decision-

making process of the model. Also, the wind shear and degree of tilting are shown to 

be relatively important by the SHAP analysis. The composites above may lead to an 

implication that, either the four more important dynamical variables being inspected for 

the moment (vo500, vo850, tilt500, and ws) are still not sufficiently considered and 

utilized by the models, or the data points consisted of these four features overlap to a 

certain extent that prevents discriminative, well-drawn decision boundaries.  

3.3.2. Principal Component Analysis (PCA) 

To answer the question in the last subsection and confirm the plausibility of the 

proposed explanation related to the construction of decision boundaries, Principal 

Component Analysis (PCA, sklearn.decomposition.PCA in Python) is applied to reduce 

the four-dimensional feature space to two-dimensional (retaining ~80% of the total 

variance) phase space for visualization, and some overlapping of points is clearly 

observed in the middle, as indicated by Fig. 3.6. The four variables have been 

normalized before computing PCA over the 59×4 testing data matrix and the first two 

principal components (PC1; PC2) are shown in Table 3.3. The PC1 mainly captures 

vorticity and tilting which have opposite signs while the PC2 is basically just vertical 

wind shear. The top-left-bottom-right orientation of the overlapping indicates that the 
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difficulty of distinguishing between developing and non-developing disturbances 

mainly lies in the confrontation of high (low) vertical wind shear versus large (small) 

vorticity and slight (severe) tilting. Hence, it is necessary to introduce other features to 

give more information and construct a more discerning ML model. 

3.4. Geographic Distribution of Cases 

We also mark the geographic locations of disturbances, which are separated into the 

four outcomes classified by the ANN model, 24 hours before genesis (developing) or 

at the time of reaching 850 hPa vorticity maximum (non-developing) in Fig. 2.1. Many 

true negative cases are located over the CP near the anti-Meridian (longitude of 180°) 

which is a gray area with a persistently low TCG frequency (refer to the image hosted 

in the NASA website by Rohde, 2006), and the model captures this fact quite well. 

There is a cluster of false positives near the Philippines. It was first speculated that the 

terrain effect may play a role in producing such results by interfere the growth of some 

nearby disturbances which may otherwise develop successfully without the disruption 

of mountains. To investigate this, a follow-up test has been conducted in which a 

distance-to-land parameter is added. It linearly increases from 0 over land to 1 at sea 

over 1000 km distance to land, and saturates afterwards. The outcome shows no 

improvement in all three models. While we won’t deny the potential influence from 

terrain on the actual TCG process (e.g. disrupting the circulation, reducing energy flux. 

General adverse terrain impacts on TCs are summarized in Petilla et al., 2023), we 

believe that it is not decisively important in the prediction of TCG by machine learning 

approach, at least in the current settings. 

3.5. Transferability to Operational Analysis Fields 
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The final section in this chapter is to conduct a test using operational analysis data from 

GFS to establish the transferability of the reanalysis-trained models to receive 

operational analysis outputs. The same models trained by the ERA5 datasets are used, 

without making new ones from GFS. The results are shown in Table 3.4. The 

performance degrades with a drop of f1-scores ranging from about 3-13% but remains 

acceptable, in the sense that it is still much better than the naive forecast (guessing all 

true, with 10/18 = 56% accuracy). Random forest retains the most skill and highest hit, 

with ANN has one less false alarm case. It is not surprising as random forest has the 

simplest, straight-forward structure which is less vulnerable to overfitting during 

extrapolation. There are several possible reasons for the performance drop. First, 

different physical models and parameterization are used in ERA5 reanalysis and GFS 

analysis data. Also, the sources and methods in the process of data assimilation between 

reanalysis versus analysis may vary. Such fundamental differences prevent perfect 

transfer learning to operational forecast. Finally, fewer cases available for the 

operational verification may suffers from more noises in the analysis data.  

 

Anyways, in practice, the operational unit can always train their own version of 

machine learning models (as elaborated in Section 5.2.2 later) so this would not be a 

serious problem. The more important question is whether there are non-model data 

unavailable at operational real-time. The 16 variables, while some are obtained from 

satellite or other sources in our training process in this work, should be all available in 

any operational center at analysis time. But the real problem is the quality of some 

variables such as precipitation and brightness temperature which are known to be not 

so accurate. Solutions include adding a data quality control module for these variables 

before supplying them to the machine learning models, or reducing the weighting of 
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these features when training the models. The transferability study in this section, 

however, exhibits the possibility to use real data in training the machine learning models 

and apply them in research-use simulation systems like WRF or HiRAM, which can be 

a rewarding new research frontier.  
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Chapter 4 

Extended Works 

4.1. Sensitivity Test of Vorticity and Tilting Variables 

This section is an extension study of the results in the previous section, aiming to 

explore the dependence and relative importance of variables used to train the models. 

The first one is a sensitivity test to ascertain the importance of the mid-level 500 hPa 

vorticity in the models. We re-train the same models of Random Forest and SVC (but 

not ANN due to the considerable stochasticity of the optimizer method) four times: 1) 

Without 500 hPa vorticity and tilting (“NIL”); 2) With 500 hPa vorticity and tilting 

(“500”); 3) With 500 hPa vorticity and tilting replaced by those at 700 hPa level (“700”); 

and 4) With both vorticity and tilting at 500 and 700 hPa levels included. Using the 

mild randomness in training Random Forest over bootstrapped samples, we train 100 

random forests with different random states (that controls the bootstrapping of samples) 

in each of the four scenarios. The corresponding cross-validation f1-scores of SVC, and 

those averaged over the multiple random forests (with the first and third quartiles drawn 

to show the scoring spread) are displayed in Fig. 4.1. It can be seen that the “500” 

experiment has the best cross-validation f1-score in Random Forest, and f1-scores in 

both Random Forest and SVC are significantly higher than the “NIL” experiment. If 

we only use the 700 hPa vorticity and tilting information in the “700” experiment, the 

performance drops, especially in the random forests. The use of vorticity and tilting 

information at both levels in the last experiment does not yield a notably better 

performance than the “500” experiment. From these results, one can conclude that the 

mid-level vortex has an irreplaceable importance in TCG prediction. This is because, 

only when a complete vertical vortex structure is present throughout the lower-middle 
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troposphere would the TC become self-sustainable. If the vorticity data at a lower level 

is used instead, the mid-level vortex, being a decisive sign of cyclogenesis as explained 

previously, would not be taken into consideration in the model prediction, and the 

performance would degrade accordingly. Another point is that the 700 hPa level is too 

close to the 850 hPa level that has been accounted for in the model prediction, and 

provides less new information than 500 hPa vorticity. 

4.2. Case Study of Typhoon Halong (2014) by Waterfall Plots 

Next, we utilize the waterfall plot function to perform a simple case study on the 

test set, and investigate if the ANN model makes sensible decisions when calculating 

the predicted genesis probability, to increase its transparency. The ANN model is used 

to produce the waterfall plot because it returns probability rather than an absolute True 

or False (1/0) as the other two models usually do. A waterfall plot shows the magnitude 

of changes in output value due to different factors in one individual sample, arranged 

in descending order, starting from the biggest increase/decrease. The selected case is 

Typhoon Halong (WP112014) which is a true positive determined by the ANN model 

already included in the test set, and the corresponding waterfall plot is shown in Fig. 

4.2. It can be seen that the vorticity at 500 hPa (28.5×10-6 s-1), above the threshold of 

20-25 × 10-6 s-1 found in Section 3.2.2, contributes positively to the TCG prediction to 

a certain extent (~+8%). However, there is a counter effect (~-16%) from the high 

vertical wind shear (6.5 m s-1) that exceeds the mid-level vorticity contribution. In fact, 

in the early life time of Halong, its growth was inhibited by the wind shear produced 

by the large circulation of the nearby monsoon depression Nakri (WP122014), which 

is clearly reflected by the ws term in the waterfall plot. Nevertheless, the next two 

features bt and vo850 are favorable, both of which being above the mean values in the 
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developing group (not shown). Together, they lead to a substantial increase (+14%) in 

the output genesis probability and subsequently a correct positive prediction. As Nakri 

moved away, its adverse impacts (mainly wind shear) on Halong diminished, and 

Halong promptly intensified.  

 

This is consistent with the presentations in Fig. 4.2 and 4.3, among which the latter 

is another waterfall plot but re-drawn 6 hours later than the former (independent of the 

original test set). It can be clearly seen from their comparison that, as the wind shear 

decreases, its negative SHAP distribution wanes. Meanwhile, other favorable factors 

like bt and vo500 are enhanced (+11%/+13%), yielding more positive SHAP values. 

The net effect is a ~+23% increase in the predicted probability of genesis compared to 

6 hours before. This case study shows that the ANN model is able to infer TCG events 

with physically sound reasons. Based on the waterfall plot output, combined with other 

known information, the forecaster can make a good judgment on how the disturbance 

would evolve. In this particular case, the forecasters may have expected that the wind 

shear, originally with the largest negative SHAP value, would weaken for Halong, 

potentially based on their experience or the dynamical forecast. They would then be 

more confident about its formation, even when the waterfall plot in Fig. 4.3, which 

serves as a verification case, was not yet available. 

4.3. Preprocessing Attempt by EOF 

To make our model more parsimonious, we attempt to apply Empirical Orthogonal 

Function (EOF, see Hannachi et al., 2007) to the 16 input variables before training, and 

take the first few EOF modes that have the most explained variances to re-train the ML 

models. Theoretically, EOF can achieve the merits of reduced overfitting and increased 

interpretability. However, the actual cross-validation and testing performance with the 
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EOF preprocessing is not good as simply using the raw inputs, as shown in Fig. 4.4. 

Only when most of the EOFs (≥10) are used, then the cross-validation score approaches 

that of the base models. And even so, the cross-validation and testing score are still 

worse than the base models. Some possible explanations include the fact that EOF is 

linear, but the relationship between variables and the models can be non-linear. In 

addition, EOF forces all the principal eigenvectors to be orthogonal, which produces 

spurious and physically meaningless weighting combinations across different features. 

4.4. Additional Sampling of Negative Cases Backward in Time 

A final extension to be made is inclusion of data collected 48 hours before TC 

formation, as additional negative samples for training. The motivation to apply such a 

change is the speculation that the growing disturbances might have undergone only a 

slight or moderate change during the gestation period before their genesis. The features 

could be very similar in magnitude and the difference might not be recognizable by the 

model. Such a condition would then likely produce a lot of false positives, in the sense 

that the model could predict a formation under 24 hours, while in some occasions a 

disturbance can actually develop after 24 hours. It may be desirable that the model could 

tell precisely if the disturbance would develop or not, in the next 24 hours exactly, and 

should return a negative answer if the disturbance would form only at a later time. 

Previous studies like Zhang et al. (2019) have not considered this situation. While it is 

also beneficial to predict TC genesis in any future time, i.e. without a fixed time window, 

this additional consideration would highly complicate our research topic and is out of 

the scope in this thesis for now. 

 

To achieve our intention, we have added 22 more negative cases with the same set 

of 16 features sampled 48 hours before the development of disturbance into TCs, and 
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hence a total of 34+22=56 negative cases, the number of which is more than twice of 

the positive cases. The performance of the re-trained models is shown in Table 4.1. 

There is a significant rise in false alarm cases by ~10 when compared to Table 3.1, and 

the precision falls to ~0.5. This also incurs a chain effect of reduced true positive cases 

and a drop of f1-score to ~0.6. Surprisingly, many of the false positives are “shuffled” 

where the previous false positives become true negatives and vice versa, further 

revealing the high sensitivity of the inclusion of extra negative cases. It strongly implies 

that the difference within the lifetime of a disturbance (“intra-case”) is much minor than 

that between different disturbances (“inter-case”), and this constitutes an obstacle for 

the model to delineate decision boundaries effectively. Intuitively, it is illustrated in the 

schematic diagram of Fig. 4.5, where it is much harder to make a clean decision 

boundary when the late-developing negative samples are added to the gray area between 

the positive cases and non-developing negative cases. This shows that it is more 

difficult than previously anticipated to accurately determine if a disturbance would 

develop strictly within the specified time window, and to tackle this problem can be 

one of the major directions in any future ML work on TCG.  
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Chapter 5 

Discussion 

5.1. Comparison with Other Studies and Operational Forecast 

The overall performance of the three models in Section 3 is comparable to that in 

Zhang et al. (2019), where they also used Random Forest and SVC along with a variety 

of other models and achieved a f1-score of 0.790 and 0.657 at the lead time of 24 hours 

in WNP. However, there are some contrasts between our study and Zhang et al. (2019). 

First, the performances across models in Zhang et al. (2019) have a much higher 

variability, with f1-scores ranging from 0.532 to 0.817. In addition, models in Zhang et 

al. (2019) always yielded greater precision than recall, which is opposite to our 

observation. It may stem from the fundamental difference that the objects being 

analyzed by Zhang et al. (2019) were mesoscale convective systems that are basically 

clusters of clouds inferred from infrared brightness temperature, whereas our study 

focuses on high low-level vorticity regions. Moreover, the number of samples is much 

smaller while the classes are more balanced in numbers in our work. Hence, extra 

cautions should be taken when drawing any conclusion from the two studies. 

 

According to the Annual Tropical Cyclone Report 2020 of JTWC (Francis and 

Strahl, 2021), its TCFA has a recall of 94% and precision of 80% (Table 1-4 in their 

report), achieving a f1-score of ~86%. It is true that the machine learning models 

developed in this work have not yet reached the same performance of the current 

operational forecast, in particular, suffering from a lower precision. However, we 

believe that with the first two suggestions proposed in Section 6.2, the gap may be 

closed. Another consideration is that, in the foreseeable future, machine learning 
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techniques would still be a heavily researched topic and likely become more advanced, 

and the performance would improve accordingly. Moreover, our machine learning 

approach in the area of TCG is still useful, in the sense that it can potentially uncover 

new insights and relationships that can in turn improve the operational assessment of 

TCG events. 

5.2. Variable Importance and Caveats 

5.2.1. Mid-level Vorticity 

The importance of the mid-level vorticity found may be explained by the 

mechanism proposed in Raymond et al. (2011), which has been described in the 

introduction. The building up of the mid-level vortex shortly before TCG facilitates a 

transition from a top-heavy to bottom-heavy vertical mass flux profile, which in turn 

promotes low-level mass and vorticity convergence and eventually leads to the 

formation of a complete TC vortex. However, it does not rule out the possibility that 

thermodynamic or other unused/unknown variables can also participate in the process, 

maybe to a lesser degree. Actually, the two thermodynamic features SST and Tanomaly 

are mostly ranked as intermediate by importance. In addition, some thermodynamic 

variables such as SST (needs to be greater than 26.5°C, see Dare and McBride, 2011) 

and convection act more like a trigger and afterwards their effects on genesis wear off 

(hypothesized for Tanomaly in Section 3.2.1), and are not reflected in the prediction of 

approaching TCG events for pre-existing disturbances. For instance, most of 

disturbance cases have an SST of at least 27°C, which is well above the minimal 

requirement. 

5.2.2. Caveats and Feasibility to Deploy Operationally 
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Another issue is that the resolution of the ERA5 reanalysis data is so coarse that 

small-scale structures of vertical pressure velocity and divergence/convergence cannot 

be properly resolved. It disables their usage in the training of machine learning models 

as the comparison of these variables between the developing and non-developing sets 

displays unreasonable patterns, such as the average upward pressure velocity being 

greater in the non-developing set than the developing set. So, more delicate phenomena 

like Vortical Hot Tower (VHT) mergers in Montgomery et al. (2006) cannot be inferred 

from the reanalysis data, and it is not possible to design the machine learning 

architecture in a way so as to verify the paradigm. Nevertheless, mid-level vorticity, 

which usually manifests as a large-scale structure, can be used as a proxy to these 

unresolved features, enabled by the supposed establishment of a mid-level vortex after 

the VHT formation and coalescence according to those studies. In fact, the effectiveness 

of feeding 500 hPa vorticity into model training has been confirmed by the preceding 

SHAP and composite analysis in Section 3, as well as the sensitivity test in Section 4.1.  

 

When fed with the analysis fields of an operational weather system, the training of 

the ML models here only requires the area-averaged variables (as computed according 

to Table 2.2) and hence yield the same results regardless of resolutions. However, 

different assimilation techniques as well as different physical process representation 

would have led to varying values of variables. Although the deviations in feature 

magnitude are possibly limited, they may produce some fluctuations in the machine 

learning model results, and requiring re-training when deployed for different 

operational analysis using the corresponding analysis data. Nevertheless, in general, our 

work provides a machine learning framework that, when necessary, can be adopted to 

various modeling systems as separately trained models.  
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Chapter 6 

Summary 

6.1. Overall Findings 

In this study, developing and non-developing disturbances in the WNP and CP 

regions over a 13-year period are identified and three ML models, Random Forest, SVC, 

and ANN, are trained to recognize TCG events at the lead time of 24 hours. The 

performance is quite satisfactory and comparable to the existing literature with a f1-

score close to 0.8. The novelty of our work lies in the use of SHAP value to explain 

predictions generated by the models, which is its first trial in the field of TCG. It is 

shown that SHAP analysis can assist forecasters in determining TCG, through 

quantifying how much the various factors contribute to the predicted genesis probability, 

and would help make the models more transparent. This is an improvement in relation 

to previous works of the same topic. According to the SHAP analysis, mid-level 

vorticity is the most crucial indicator in cyclogenesis prediction. Vertical wind shear, 

along with tilting, ranks second in importance in SVC and ANN. Shear-coordinate 

composites are produced and a sensitivity experiment is conducted to verify the findings. 

From these, we conclude that those dynamical variables inducing the establishment of 

a complete vertical vortex are the main drivers in the TCG process as recognized by our 

ML approach. These are consistent with previous research, and invite further 

investigation into the physical mechanisms on how these factors interplay in TCG. 

Specifically, a reflection on theories associated with the mid-level vortex pathway to 

TCG may worth further study (e.g. Raymond et al., 2011; Ge et al., 2013). 

6.2. Future Works 
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Some future directions for improvement on TCG forecast by ML may include: 1) 

Use a ML model that considers the entire time series of the disturbance before genesis, 

such as a recurrent neural network (RNN), so that the change of feature values in time 

can be explored, and continuous predictions that are temporally coherent can be made; 

2) Add more potentially useful indicators. Although it is found that the difference in 

entropy deficit between the developing and non-developing sets does not pass the two 

statistical tests used in our study at 99% significance level (see Table 2.3), it is 

worthwhile to include them in the training process, as seen by comparing Tables 3.1 

and 3.2. Even when the objective criterion aforementioned is not fulfilled, one can 

always attempt to include more variables subjectively that are empirically known to be 

essential in the process of TCG. The selection can be optimized using a greedy iterative 

algorithm, such as one similar to the forward selection method outlined in Section 7.4.2 

of Wilks (2021), or the commonly used elbow method; 3) Include negative samples 

representing developing disturbances that form TCs only after the lead time similar to 

what is done in Section 4.4, and construct a ML model that is more specific to the lead 

time. This will help reduce false positives that behave as premature warnings; 4) 

Standardize the definition of disturbances across different studies. Low-level vorticity 

and brightness temperature are two frequent choices, and comparison can be 

meaningfully performed if future researchers adhere to only one definition; 5) Employ 

more powerful interpretation tools when available, to enhance the transparency of the 

decision-making process of models, through which researchers can obtain more insights 

about the physics of TCG. This is equally important for operational tasks, so that 

forecasters can rely on a more trustworthy ML prediction. 
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Machine Learning Models 
Used 

Decision Tree  
[Zhang et al. (2015)] 

Random Forest and 
AdaBoost  
[Zhang et al. (2019)] 

Convolutional Neural 
Network  
[Zhang et al. (2022)] 

Pros It is easy to visualize the 
decision of model. 

MDI (Mean Decrease 
Impurity) can be computed 
for feature importance. 

It has the most powerful 
performance among the 
three works. 

Cons There is no feature 
importance calculation. 

The MDI importance 
requires the machine 
learning model being a 
tree-based algorithm. It 
only outputs a single scalar 
value, without detailed 
analysis. 

It is very difficult to 
interpret and visualize 
compressed features. 

Table 1.1. Pros and cons of the selected machine learning works on TCG [Zhang et al. (2015), Zhang et al. (2019) and Zhang 

et al. (2022)].  
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Developing Non-

Developing 

Marginal 

Training/ 

Validation 

(2003-2013) 

102+25=127 

(52%) 

94+24=118 

(48%) 

245 (100%) 

Testing 

(2014-2015) 

25 (42%) 34 (58%) 59 (100%) 

Operational 

Verification for 

Transferability 

(2021) 

10 (56%) 8 (44%) 18 (100%) 

Total 162 (50%) 160 (50%) 322 (100%) 

Table 2.1. The numbers and percentages of developing and non-

developing disturbances in training/validation and testing set. “Marginal” 

means the sum of a row. The numbers to the left/right of plus sign (+) in 

the training/validation row indicates the counts of training set and 

validation set respectively. Notice that the data split is not the standard 

“80%/10%/10%”. Rather, the training/validation and testing sets are first 

split by the time periods indicated in the parentheses, and then the 

training/validation set is internally split again by a “80%/20%” ratio. 
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Predictors (Total: 

14+2=16) 

[abbreviation] 

Pre-processing 

Vorticity at 850 hPa 

(low-level) [vo850] 

Gaussian smoothing with a standard deviation 

of 2 degrees, and the location of its maximal 

value chosen as the low-level disturbance 

center. 

Vorticity at 500 hPa 

(mid-level) 

[vo500] 

Same smoothing as above. The maximal 

value closest to the low-level disturbance 

center defined above is identified, and the 

location of which is denoted as the mid-level 

disturbance center. 

Tilting of the vortex 

tube [tilt500] 

The distance between the low-level and mid-

level disturbance centers assigned as above. 

300-1000 hPa column-

integrated water vapor 

(inner) [q_inner] 

Averaged inside a circle of 1-degree radius 

centered at the low-level disturbance center. 

(Other predictors below are all extracted from 

inside of some regions that are similarly 

centered at the low-level disturbance center.) 

300-1000 hPa column-

integrated water vapor 

(outer) [q_outer] 

Averaged inside an annular region spanning 

from 2 degrees to 4 degrees. 

Fraction of grid points 

with precipitation 

greater than 0.25 

mm/hr [prec] 

Inside a circle having a radius of 6 degrees. 

Temperature anomaly 

between 300-600 hPa 

[Tanomaly] 

The mean inside a circle of 1 degree radius, 

minus the mean over a box of 10×10 degrees. 
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Okubo-Weiss 

parameter at 600 hPa 

[OW600] 

Averaged inside a circle having a radius of 3 

degrees. If the vorticity at a pixel is negative, 

a minus sign is added before the averaging. 

Latitude [lat] -- 

Vertical Wind Shear 

between 500 and 850 

hPa levels [ws] 

Computed as the difference between the mean 

wind at 500 and 850 hPa level inside an 

annular ring of 2 degrees to 8 degrees. This 

annular ring is referenced from literatures like 

Wingo and Cecil (2010). 

Moist Static Energy at 

1000 hPa [mse1000] 

Averaged inside a circle with a radius of 4.5 

degrees. 

Sea surface 

temperature [SST] 

Averaged inside a circle with a radius of 3 

degrees. 

Mean infrared 

brightness temperature 

[bt] 

Averaged inside a circle with a radius of 6 

degrees. 

Fraction of grid points 

with infrared brightness 

temperature below 

218K 

[btarea] 

Counted inside a circle with a radius of 6 

degrees. 

Entropy Deficit [Chi] 

 

Follow Tang and Emanuel (2012) exactly 

Instability Index [I] 

 

Follow Raymond et al. (2014), averaged 

within a circle with a radius of 1 degree. 

Table 2.2. The list of input predictors for model training and their pre-

processing procedure. 
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Predictors (Total: 

14+2 = 16) 

Student’s t K-S 

vo850 1.63×10-18 3.33×10-16 *  

vo500 1.06×10-27 3.33×10-16 * 

tilt500 6.05×10-17 9.90×10-12 

q_inner 5.69×10-5 3.04×10-3 

q_outer 3.43×10-12 1.88×10-9 

prec 4.17×10-3 2.39×10-3 

Tanomaly 2.88×10-17 3.33×10-16 * 

OW600 4.27×10-11 5.27×10-8 

lat 4.50×10-12 5.31×10-14 

ws 3.15×10-6 1.09×10-5 

mse1000 1.28×10-13 3.68×10-12 

SST 7.61×10-6 4.12×10-4 

bt 7.33×10-7 3.95×10-5 

btarea 1.51×10-6 5.94×10-4 

Chi 0.157 0.533 

I 0.067 0.013 

Table 2.3. The p-values of Student’s t-test and Kolmogorov-Smirnov test 

for all the 14+2 = 16 variables. The asterisk * indicates the smallest 

possible p-value of the K-S test computed by the Python scipy.stats library. 
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Machine 

Learning 

Models 

Hyperparameters 

Random Forest max_depth=15, ccp_alpha=0.005, n_trees=100 

SVC StandardScalar at the top, C=0.25, RBF kernel 

ANN See Fig. 5 for the architecture. Adamax optimizer: 

learning_rate=0.001, beta_1=0.9, beta_2=0.999;  

Early stopping based on validation accuracy with a 

patience of 100 steps;  

Simple scheduler with a factor of exp(-0.025) applied 

to every step after 50 iterations;  

Loss: Binary Cross-entropy 

Table 2.4. The values of hyperparameters supplied to the three candidate 

machine learning models. 
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Prediction 

 

True False 
 

Actual True True Positive 

(Hit) 

False 

Negative 

(Miss) 

Recall = TP/(TP+FN) 

False False 

Positive  

(False Alarm) 

True 

Negative 

(Correct 

Negative) 

 

  
Precision = 

TP/(TP+FP) 

 
F1-Score = 

2*(Rec*Prec)/(Rec+Prec) 

Table 2.5. Confusion matrix of four possible outcomes and formula for the 

three metrics used. Note: Here positive implies developing and negative 

implies non-developing. 
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Random 

Forest 

SVC ANN 

(Cross-) Validation 

Accuracy 

0.847 0.870 0.857 

TP (Hits) 21 23 23 

FN (Misses) 4 2 2 

FP (False Alarms) 8 8 8 

TN (Correct Negative) 26 26 26 

Test Recall/Precision 0.840/0.724 0.920/0.741 0.920/0.741 

Test F1-Score 0.777 0.821 0.821 

Table 3.1. Performances of the three machine learning models (Random 

Forest, SVC, ANN) with the full 14+2 = 16 features. 
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Random 

Forest 

SVC ANN 

(Cross-) Validation 

Accuracy 

0.820 0.849 0.857 

TP (Hits) 21 22 23 

FN (Misses) 4 3 2 

FP (False Alarms) 9 11 10 

TN (Correct Negative) 25 23 24 

Test Recall/Precision 0.840/0.700 0.880/0.667 0.920/0.697 

Test F1-Score 0.764 0.759 0.793 

Table 3.2. Same as Table 3.1 with only the first 14 variables which pass 

the statistical tests. 
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 vo500 vo850 tilt500 ws 

PC1 -0.619 -0.604 0.502 -0.010 

PC2 -0.072 -0.029 -0.105 0.991 

Table 3.3. The four components of the first two EOF (Empirical 

Orthogonal Function) vectors in the PCA analysis (Section 3.3.2). 
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Random Forest SVC ANN 

TP (Hits) 9 8 8 

FN (Misses) 1 2 2 

FP (False Alarms) 5 5 4 

TN (Correct Negative) 3 3 4 

Test Recall/Precision 0.900/0.643 0.800/0.615 0.800/0.666 

Test F1-Score 0.750 0.695 0.727 

Table 3.4. Same as Table 3.1 but on the operational verification set. 
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Random Forest SVC ANN 

TP (Hits) 19 21 19 

FN (Misses) 6 4 6 

FP (False Alarms) 19 20 19 

TN (Correct Negative) 37 36 37 

Test Recall/Precision 0.760/0.500 0.840/0.512 0.760/0.500 

Test F1-Score 0.603 0.636 0.603 

Table 4.1. Same as Table 3.1 with an addition of 22 negative samples 48 

hours before TCG. 
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Figure 2.1. The studied regions of Western North Pacific (WNP) and Central Pacific (CP) from 0° to 25°N and 125°E to 

165°W indicated by the green box. The symbols of blue dot, gray cross, red dot and red cross represent true positive, true 

negative, false negative and false positive cases in the test set results generated by the Artificial Neural Network (ANN) model. 

Their locations represent where the disturbances are, either 24 hours before genesis (developing) or at the moment of reaching 

850 hPa vorticity maximum (non-developing).  
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Figure 2.2. Schematic of the Kalman-to-Overlapping procedure. See the text on the figure for meanings of the colors. 

 



doi:10.6342/NTU202303630

58 

 

 

 

Figure 2.3. The probability distributions of developing (blue) and non-

developing (green) sets for the variables: (a) 500-850 hPa vertical wind 

shear (unit: m s-1), and (b) 500 hPa vorticity (unit: 10-6 s-1). The p-values 

of t-test and K-S test are (a) 3.15×10-6 and 1.10×10-5; (b) 1.06×10-27 and 

3.33×10-16 respectively. 
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Figure 2.4. A schematic diagram showing the circular/annular regions 

where different variables are averaged/extracted. Different colors indicate 

different variables. Solid/dotted lines represent outer/inner boundaries. 
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Figure 2.5. A schematic diagram showing how the method of grid search 

works, by cross-validating different models with every possible 

hyperparameter configurations arranged in an array. 
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Figure 2.6. The architecture of the ANN used, with one layer of Batch 

Normalization and three fully-connected hidden layers, yielding the output 

genesis probability at the end. 
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Figure 2.7. A made-up example of SHAP value computation. There are three features: vorticity, wind shear and SST, leading 

to 23 = 8 possible configurations of elements. To obtain the SHAP value of vorticity, find all coalitions that have vorticity 

present (black text), paired against those with vorticity absent (gray text). Their difference (yellow text) in output predicted 

genesis probability (green text) are then calculated pair by pair. For example, the first pair, only vorticity versus none, the 

difference is 54% - 46% = 8%. A weighted average of these differences is then taken to obtain the SHAP value for vorticity. 
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Figure 3.1. Beeswarm plots showing the SHAP values for each feature in each test sample as colored dots for the model of 

(a) Random Forest, (b) SVC, (c) ANN. X-axis is SHAP value and y-axis represents different variables. Cooler (Warmer) 

color represents a relatively lower (higher) value of the variable. The features are ranked in terms of mean absolute SHAP 

values (as an indicator of importance, see Figure 3.2.) from the top (more important) to the bottom (less important). 
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Figure 3.2. Barplots showing the mean absolute SHAP values of (a) Random Forest, (b) SVC, (c) ANN. 
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Figure 3.3. Dependence 

plots of 500 hPa vorticity for 

(a) Random Forest, (b) SVC, 

(c) ANN. X-axis is vorticity 

(unit: 10-6 s-1) and y-axis is 

the SHAP value 

corresponding to 500 hPa 

vorticity. Each dot 

represents one test sample. 

The orange horizontal line 

shows the baseline where 

SHAP value is zero, and the 

green vertical arrow 

approximately identifies the 

location where the sign of 

SHAP changes. The black 

vertical line denotes the 

average of the variable value, 

shown at the bottom of the 

plot. 
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Figure 3.4. Same as Figure 

3.3, but for wind shear. (unit: 

m s-1). 
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Figure 3.5. Shear-coordinate composite of vorticity at 500 hPa (contour, 

unit: 10-6 s-1) and 850 hPa (shading, unit: 10-6 s-1) for (a) True Positive, (b) 

False Positive, (c) False Negative, (d) True Negative cases. The numbers 

in brackets are the average wind shear magnitude (unit: m s-1) for each of 

the four classes respectively. The red arrow stands for the shear vector. 
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Figure 3.6. Principal Component Analysis applied to the (standardized) 

four-dimensional feature space created by the variables vo500, vo850, 

tilt500, and ws. The two leading PCA modes are retained and the 

distribution of data over the reduced two-dimensional PCA space is 

displayed. Blue: developing; Green: non-developing; Circles: correct for 

all the three models; Crosses: incorrect for at least one model. PC1/PC2 

explains ~55%/25% of the total variance respectively. 
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Figure 4.1. (Mean) Cross-validation f1-scores of 100 Random Forests 

(blue) and SVC (green) in the four scenarios of the sensitivity experiment. 

(See text for the meanings of x-axis labels) The black vertical bar denotes 

the range between the first and third quartiles of f1-scores within the 100 

random forests. The difference in f1-scores of the random forests in any 

pair of experiments passes t-test at 99% significant level (except the 

second-fourth pair). 
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Figure 4.2. Waterfall plot for the development prediction of Typhoon 

Halong (WP112014) by the ANN model 24 hours before (2014-07-27 

06:00 UTC) its genesis. Arrow in each row shows how much the variable 

increases or decreases the output predicted genesis probability. The E[f(X)] 

is the base expected probability and f(x) is the output probability. E[f(X)] 

and all the arrows add up to f(x). 
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Figure 4.3. Same as Figure 4.2, but re-drawn for the same set of variables 

extracted 6 hours later, or 18 hours before the genesis of Halong (2014-07-

27 12:00 UTC). 
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Figure 4.4. The cross-validation f1-scores with EOF preprocessing for 

Random Forest (blue) and SVC (green). The solid curves represent the 

cross-validation performance against how many the largest EOFs are used. 

The dotted horizontal lines are the reference cross-validation f1-scores 

when the raw variables are used in the original machine learning models. 
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Figure 4.5. A schematic showing hypothetical distributions of developing 

(blue circles, 24 hours before genesis) and non-developing (red crosses) 

cases reduced to some phase space, (a) before (b) after the addition of the 

negative cases of developing disturbances 48 hours before genesis (yellow 

triangles). The light green and magenta lines represent the old and new 

decision boundaries, respectively. 

 




