Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90028
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 吳俊傑 | zh_TW |
dc.contributor.advisor | Chun-Chieh Wu | en |
dc.contributor.author | 呂智樂 | zh_TW |
dc.contributor.author | Loi Chi Lok | en |
dc.date.accessioned | 2023-09-22T17:07:05Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-09-22 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-10 | - |
dc.identifier.citation | References
Brecht, R., & Bihlo, A. (2022). Computing the ensemble spread from deterministic weather predictions using conditional generative adversarial networks. arXiv, release version. https://doi.org/10.48550/arXiv.2205.09182 Chen, R., Zhang, W., & Wang, X. (2020). Machine learning in tropical cyclone forecast modeling: a review. Atmosphere, 11(7), 676. https://doi.org/10.3390/atmos11070676 Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning. 20 (3), 273–297. https://doi.org/10.1007/BF00994018 Dare, R. A., & McBride, J. L. (2011). The threshold sea surface temperature condition for tropical cyclogenesis. Journal of Climate. 24(17), 4570-4576. http://dx.doi.org/10.1175/JCLI-D-10-05006.1 Emanuel, K. A. (1997). Some aspects of hurricane inner-core dynamics and energetics. Journal of the Atmospheric Sciences. 54(8), 1014-1026. https://doi.org/10.1175/1520-0469(1997)054<1014:SAOHIC>2.0.CO;2 Finocchio, P. M., Majumdar, S. J., Nolan, D. S., & Iskandarani, M. (2016). Idealized tropical cyclone responses to the height and depth of environmental vertical wind shear. Monthly Weather Review. 144(6), 2155-2175. https://doi.org/10.1175/MWR-D-15-0320.1 Francis, A. S. & Strahl, B. R. (2021). Annual Tropical Cyclone Reports 2020. Joint Typhoon Warning Center. https://www.metoc.navy.mil/jtwc/products/atcr/2020atcr.pdf Fu, B., Peng, M. S., Li, T., & Stevens, D. E. (2012). Developing versus nondeveloping disturbances for tropical cyclone formation. Part II: Western North Pacific. Monthly Weather Review. 140(4), 1067-1080. https://doi.org/10.1175/2011MWR3618.1 Gao, S., Zhu, L., Zhang, W., and Shen, X. (2020). Western North Pacific tropical cyclone activity in 2018: A season of extremes. Scientific Reports. 10, 5610. https://doi.org/10.1038/s41598-020-62632-5 Ge, X., Li, T., & Peng, M. S. (2013). Tropical cyclone genesis efficiency: Mid-level versus bottom vortex. Journal of Tropical Meteorology. 19(3), 197-213. Géron, A. (2019). Hands-on machine learning with Scikit-learn, Keras, and Tensorflow. Sebastopol, CA: O’ Reilly. Griffin, S. M., Wimmers, A., & Velden, C. S. (2022). Predicting rapid intensification in North Atlantic and eastern North Pacific tropical cyclones using a convolutional neural network. Weather and Forecasting, 37(8), 1333-1355. https://doi.org/10.1175/WAF-D-21-0194.1 Hannachi, A., Jolliffe, I.T., & Stephenson, D.B. (2007). Empirical orthogonal functions and related techniques in atmospheric science: A review. International Journal of Climatology. 27(9), 1119-1152. https://doi.org/10.1002/joc.1499 Hersbach, H. et al. (2018a): ERA5 hourly data on single levels from 1959 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). https://doi.org/10.24381/cds.adbb2d47 Hersbach, H. et al. (2018b). ERA5 hourly data on pressure levels from 1959 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). https://doi.org/10.24381/cds.bd0915c6 Huang, B. et al. (2020): Improvements of the Daily Optimum Interpolation Sea Surface Temperature (DOISST) Version 2.1. Journal of Climate. 34, 2923-2939. https://doi.org/10.1175/JCLI-D-20-0166.1 Huang, X., Hu, C., Huang, X., Chu, Y., Tseng, Y., Zhang, G. J., & Lin, Y. (2018). A long-term tropical mesoscale convective systems dataset based on a novel objective automatic tracking algorithm. Climate Dynamics. 51, 3145-3159. https://doi.org/10.1007/s00382-018-4071-0 Huffman, G. J., Bolvin, D. T., Nelkin E. J., & Adler, R. F. (2016). TRMM (TMPA) Precipitation L3 1 day 0.25 degree × 0.25 degree V7, edited by Andrey Savtchenko, Goddard Earth Sciences Data and Information Services Center (GES DISC). Accessed: 2022/08/05, https://doi.org/10.5067/TRMM/TMPA/DAY/7 Ikehata, K., & Satoh, M. (2021). Climatology of tropical cyclone seed frequency and survival rate in tropical cyclones. Geophysical Research Letters. 48(18), e2021GL093626. https://doi.org/10.1029/2021GL093626 Kerns, B. W., & Chen, S. S. (2015). Subsidence warming as an underappreciated ingredient in tropical cyclogenesis. Part I: Aircraft observations. Journal of the Atmospheric Sciences. 72(11), 4237-4260. https://doi.org/10.1175/JAS-D-14-0366.1 Knapp, K. R. et al. (2011). Globally gridded satellite (GridSat) observations for climate studies. Bulletin of the American Meteorological Society. 92, 893-907. https://doi.org/10.1175/2011BAMS3039.1 Liaw, A., & Wiener, M. (2002). Classification and regression by random forest. R News. 2(3), 18-22. https://CRAN.R-project.org/doc/Rnews/. Lundberg, S., & Lee, S. (2017). A unified approach to interpreting model predictions. arXiv, v2. https://doi.org/10.48550/arXiv.1705.07874 Molnar, C. (2022). Shapley Values. In Interpretable machine learning: A guide for making black box models explainable (Ch 9.5). Online. https://christophm.github.io/interpretable-ml-book/shapley.html Montgomery, M. T., Nicholls, M. E., Cram, T. A., & Saunders, A. B. (2006). A vortical hot tower route to tropical cyclogenesis. Journal of the Atmospheric Sciences. 63(1), 355-386. https://doi.org/10.1175/JAS3604.1 Peng, M. S., Fu, B., Li, T., & Stevens, D. E. (2012). Developing versus nondeveloping disturbances for tropical cyclone formation. Part I: North Atlantic. Monthly Weather Review. 140(4), 1047-1066. https://doi.org/10.1175/2011MWR3617.1 Petilla, C. E. R., Tonga, L. P. S., & Olaguera, L. M. P. et al. (2023). Changes in intensity and tracks of tropical cyclones crossing the central and southern Philippines from 1979 to 2020: an observational study. Progress in Earth and Planetary Science. 10, 32. https://doi.org/10.1186/s40645-023-00563-1 Qian, Q., Jia, X., & Lin, Y. (2022). Reduced tropical cyclone genesis in the future as predicted by a machine learning model. Earth's Future, 10(2), e2021EF002455. https://doi.org/10.1029/2021EF002455 Raymond, D., Gjorgjievska, S., Sessions, S., & Fuchs, Ž. (2014). Tropical cyclogenesis and mid-level vorticity. Australian Meteorological and Oceanographic Journal. 64, 11-25. https://doi.org/10.22499/2.6401.003. Raymond, D. J., & López Carrillo, C. (2008). The vorticity budget of developing typhoon Nuri (2008). Atmospheric Chemistry and Physics. 11(1), 147–163. https://doi.org/10.5194/acp-11-147-2011 Raymond, D. J., Sessions, S. L., & López Carrillo, C. (2011). Thermodynamics of tropical cyclogenesis in the northwest Pacific. Journal of Geophysical Research: Atmospheres. 116, D18101. https://doi.org/10.1029/2011JD015624 Rohde, R. A. (2006). Historic Tropical Cyclone Tracks. Global Warming Art. https://earthobservatory.nasa.gov/images/7079/historic-tropical-cyclone-tracks Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1985). Learning internal representations by error propagation. University of California, San Diego, CA: Institute for Cognitive Science. Saho, K. (2017). Kalman Filter for moving object tracking: Performance analysis and filter design. In G. L. de Oliveira Serra (Ed.), Kalman Filters - Theory for advanced applications (Ch. 12). IntechOpen. http://dx.doi.org/10.5772/intechopen.71731 Tang, B., & Emanuel, K. (2010). Midlevel ventilation’s constraint on tropical cyclone intensity. Journal of the Atmospheric Sciences. 67(6), 1817-1830. https://doi.org/10.1175/2010JAS3318.1 Tang, B., & Emanuel, K. (2012). A ventilation index for tropical cyclones. Bulletin of the American Meteorological Society. 93(12), 1901-1912. https://doi.org/10.1175/BAMS-D-11-00165.1 Tao, D., & Zhang, F. (2014). Effect of environmental shear, sea-surface temperature, and ambient moisture on the formation and predictability of tropical cyclones: An ensemble-mean perspective. Journal of Advances in Modeling Earth Systems. 6(2), 384-404. https://doi.org/10.1002/2014MS000314 Thatcher, L., & Pu, Z. (2013). Evaluation of tropical cyclone genesis precursors with relative operating characteristics (ROC) in high resolution ensemble forecasts: Hurricane Ernesto. Tropical Cyclone Research and Review, 2(3), 131-148. https://doi.org/10.6057/2013TCRR03.01 Titley, H. A., Yamaguchi, M., & Magnusson L. (2019). Current and potential use of ensemble forecasts in operational TC forecasting: Results from a global forecaster survey. Tropical Cyclone Research and Review, 8(3), 166-180. https://doi.org/10.1016/j.tcrr.2019.10.005 Wang, C., Zeng, Z. & Ying, M (2020). Uncertainty in tropical cyclone intensity predictions due to uncertainty in initial conditions. Advances in Atmospheric Sciences. 37, 278-290. https://doi.org/10.1007/s00376-019-9126-6 Wang, X., & Jiang, H. (2019). A 13-Year global climatology of tropical cyclone warm-core structures from AIRS data. Monthly Weather Review. 147(3), 773-790. https://doi.org/10.1175/MWR-D-18-0276.1 Wang, Z. (2018). What is the key feature of convection leading up to tropical cyclone formation? Journal of the Atmospheric Sciences, 75(5), 1609-1629. https://doi.org/10.1175/JAS-D-17-0131.1 Wang, Z., & Hankes, I. (2016). Moisture and precipitation evolution during tropical cyclone formation as revealed by the SSM/I–SSMIS retrievals. Journal of the Atmospheric Sciences. 73(7), 2773-2781. https://doi.org/10.1175/JAS-D-15-0306.1 Wilks, D. (2011). Screening Predictors. In Statistical Methods in the Atmospheric Sciences (Vol. 100). Academic Press. ISBN: 978-0-12-385022-5 Wingo, M. T., & D. J. Cecil (2010). Effects of Vertical Wind Shear on Tropical Cyclone Precipitation. Monthly Weather Review. 138(3), 645–662. https://doi.org/10.1175/2009MWR2921.1 Zhang, R., Liu, Q., Hang, R., & Liu, G. (2022). Predicting tropical cyclogenesis using a deep learning method from gridded satellite and ERA5 reanalysis data in the western North Pacific basin. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-10. https://doi.org/10.1109/TGRS.2021.3069217 Zhang, T., Lin, W., Lin, Y., Zhang, M., Yu, H., Cao, K., & Xue, W. (2019). Prediction of tropical cyclone genesis from mesoscale convective systems using machine learning. Weather and Forecasting, 34(4), 1035-1049. https://doi.org/10.1175/WAF-D-18-0201.1 Zhang, W., Fu, B., Peng, M. S., & Li, T. (2015). Discriminating developing versus nondeveloping tropical disturbances in the western North Pacific through decision tree analysis. Weather and Forecasting, 30(2), 446-454. https://doi.org/10.1175/WAF-D-14-00023.1 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90028 | - |
dc.description.abstract | 摘要
由於缺少統一的理論,預測熱帶氣旋生成一直都是相當困難的研究議題。目前實作主要用動力模式預測熱帶氣旋生成,但機器學習方式最近被提出可作為低成本之替代品,能活用大量再分析資料。這份研究用再分析資料中的大氣及海洋變數,訓練了隨機森林、支持向量機、和神經網絡三個機器學習模型,以預測24小時內熱帶擾動生成能否發展為熱帶氣旋。機器學習模型總體表現不俗,f1-分數達0.8,可比擬前人研究。召回率(約0.9)普遍比精確率(約0.7)高。作業用分析資料則進一步用來測試模型實用性。 其後,SHAP值分析發現中層(500百帕)渦度是影響熱帶氣旋在24小時內生成的最關鍵因素。風切及渦管傾斜也有一定重要性。敏感度測試確認了中層渦度及傾斜比起低層的更重要。此結果鼓勵更多物理模式實驗探討中層動力如何引致熱帶氣旋生成。SHAP值也增加了機器學習模型的可解釋性。本研究以颱風哈隆為例,展示各變數對其生成預測機率之影響。如此可以增加機器學習模型的可靠度,並提升熱帶氣旋生成預警之準確度。 最後,本論文提出目前以機器學習方式預測熱帶氣旋生成的一些問題。其中之一為:忽略熱帶擾動於預測期間外生成的樣本。同時,亦提出針對各問題未來研究的可改善方向。 | zh_TW |
dc.description.abstract | Abstract
Predicting Tropical Cyclone Genesis (TCG) events has been a challenging research topic due to a lack of conclusive theory which unifies different hypotheses about TCG mechanisms. In practice, dynamical models are used to forecast TCG occurrence, but given some of its limitations in recent years machine learning has been proposed as an alternative low-cost approach that can utilize the abundance of reanalysis data. In this study, we attempt to train three machine learning models with varying complexity: Random Forest, Support Vector Machine, and Artificial Neural Network, by feeding various atmospheric and oceanic, dynamic and thermodynamic variables extracted from reanalysis data, to predict cyclogenesis at a forecast lead time of 24 hours for candidate tropical disturbances, identified by an optimized Kalman Filter algorithm. The overall performance is competent in terms of the f1-scores (~0.8) compared to previous researches of the same kind, with recalls (~0.9) generally higher than precisions (~0.7). Operational analysis data is used to further verify the practicality of the models. An assessment by SHapley Additive exPlanations (SHAP) values reveals that mid-level (500 hPa) vorticity is the most influential factor in deriving the genesis probability at the lead time of 24 hours. Wind shear and tilting are found to possess a considerable level of importance as well. A sensitivity test is done to reaffirm the role of mid-level vorticity and tilting compared to the lower-level ones. These results encourage further experiments that use physical models to explore the dynamical, mid-level pathway to TCG. Nevertheless, some of the thermodynamic variables are also influential, with outer core humidity becoming significant when the forecast lead time is changed to 48 hours. Another usage of SHAP values in this work is providing extra interpretability for the machine learning models, by listing out the contribution of each feature to the output genesis probability, illustrated by a case study of Typhoon Halong. This increases their reliability and forecasters can take advantage of such information to issue tropical cyclone formation warnings more accurately. Finally, several caveats of current machine learning applications in TCG, including this work, are discussed. One of the main problems is the negligence of presumably negative samples from developing tropical disturbances that only reaches tropical cyclone status long after the required forecast lead time. Several potential improvements for future research are suggested correspondingly. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:07:05Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-09-22T17:07:05Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Acknowledgements I
Abstract (English) II Abstract (Chinese) IV Table of Contents V List of Tables VII List of Figures VIII Chapter 1 Introduction 1 1.1. Review of Current Machine Learning Works on TCG 1 1.2. Review of Physical Factors and Pathways Affecting TCG 3 1.2.1. Dynamical Variables 3 1.2.2. Thermodynamic Variables 5 1.3. Objectives of this Work 7 Chapter 2 Data and Methodology 9 2.1. Data Used, Spatial Extent and Time Period of Study 9 2.2. Disturbance Tracking Algorithm by Kalman Filter 10 2.3. Feature Selection 14 2.4. Machine Learning Models Used and Training Details 15 2.5. Introduction of SHAP Values 16 Chapter 3 Results and Interpretation 18 3.1. Model Performance 18 3.2. SHAP values Patterns 18 3.2.1. Beeswarm Plots 18 3.2.2. Dependence Plots 20 3.3. Investigation of Dynamical Variables 21 3.3.1. Shear-coordinate Composites 21 3.3.2. Principal Component Analysis (PCA) 22 3.4. Geographic Distribution of Cases 23 3.5. Transferability to Operational Analysis Fields 23 Chapter 4 Extended Works 26 4.1. Sensitivity Test of Vorticity and Tilting Variables 26 4.2. Case Study of Typhoon Halong (2014) by Waterfall Plots 27 4.3. Preprocessing Attempt by EOF 28 4.4. Additional Sampling of Negative Cases Backward in Time 29 Chapter 5 Discussion 31 5.1. Comparison with Other Studies and Operational Forecast 31 5.2. Variable Importance and Caveats 32 5.2.1. Mid-level Vorticity 32 5.2.2. Caveats and Possibility to Deploy Operationally 32 Chapter 6 Summary 34 6.1. Overall Findings 34 6.2. Future Works 34 References 36 Tables 44 Figures 56 | - |
dc.language.iso | en | - |
dc.title | 以機器學習方法預測颱風生成及其SHAP詮釋 | zh_TW |
dc.title | Prediction of Tropical Cyclogenesis Based on Machine Learning Methods and its SHAP interpretation | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 梁禹喬 | zh_TW |
dc.contributor.coadvisor | Yu-Chiao Liang | en |
dc.contributor.oralexamcommittee | 連國淵;遲正祥 | zh_TW |
dc.contributor.oralexamcommittee | Guo-Yuan Lien;Cheng-Hsiang Chih | en |
dc.subject.keyword | 熱帶氣旋,熱帶氣旋生成,機器學習,SHAP值, | zh_TW |
dc.subject.keyword | Tropical Cyclones,Tropical Cyclone Genesis,Machine Learning,SHAP values, | en |
dc.relation.page | 73 | - |
dc.identifier.doi | 10.6342/NTU202303630 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-08-11 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 大氣科學系 | - |
Appears in Collections: | 大氣科學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-111-2.pdf | 2.25 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.