Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90010
Title: 可提供缺氧環境及剪應力刺激之微流道裝置對於血管內皮細胞型態及活性氧化物表現之研究
A microfluidic device to study the coupling effect of hypoxia and shear stress on morphology and reactive oxygen species secretion of endothelial cells
Authors: 辛旻諺
Min-Yen Hsin
Advisor: 黃念祖
Nien-Tsu Huang
Keyword: 缺氧,剪應力,微流道,內皮細胞,
Hypoxia,Shear stress,Microfluidic,Endothelial,
Publication Year : 2023
Degree: 碩士
Abstract: 本論文介紹了一種微流體裝置,用於研究缺氧和剪應力對內皮細胞行為的影響。內皮細胞在炎症、心血管疾病和癌症生長中發揮著關鍵作用。該微流體裝置能夠精確控制細胞培養室內的氧氣濃度分佈和剪應力大小,實現多重測試。通過將內皮細胞暴露在不同的缺氧和剪應力環境下,通過測量反應性氧化物種(ROS)以評估細胞內的氧化壓力,並進行細胞形態分析。研究結果表明,缺氧和剪應力可以調節ROS的產生,為心血管疾病和運動相關研究提供了重要見解。該裝置提供了比傳統方法更貼近生理的細胞培養環境,並可應用於抗癌藥物測試、腫瘤學研究和心血管疾病調查等領域。總體而言,該微流體裝置可作為瞭解內皮細胞對缺氧和剪應力反應機制的研究工具,其對氧氣濃度分佈和剪應力條件的精確控制有助於全面研究這些因素的影響,並推動血管生物學和相關學科的發展。
This thesis introduces a microfluidic device developed to investigate the influence of hypoxia and shear stress on endothelial cell behavior. Endothelial cells are critical in inflammation, cardiovascular diseases, and cancer growth. The microfluidic device enables precise control of oxygen distribution and shear stress conditions within a cell culturing chamber, facilitating multiplex testing. By subjecting endothelial cells to varying hypoxia and shear stress levels, intracellular oxidative stress was evaluated through reactive oxygen species (ROS) measurements and cell morphology analysis. The findings indicate that hypoxia and shear stress can modulate ROS expression, offering valuable insights into vascular diseases and exercise-related research. The device provides a more physiologically relevant cell culturing environment than conventional methods, and its potential applications extend to anti-cancer medication testing, oncological studies, and cardiovascular disease investigations. In summary, the developed microfluidic device is a valuable tool for understanding the underlying mechanisms governing endothelial cell behavior in response to hypoxia and shear stress. The precise control over oxygen distribution and shear stress conditions facilitates comprehensive investigations into the effects of these factors, thereby contributing to advancements in the field of vascular biology and related disciplines.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90010
DOI: 10.6342/NTU202303662
Fulltext Rights: 未授權
Appears in Collections:生醫電子與資訊學研究所

Files in This Item:
File SizeFormat 
ntu-111-2.pdf
  Restricted Access
5.79 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved