請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90010
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃念祖 | zh_TW |
dc.contributor.advisor | Nien-Tsu Huang | en |
dc.contributor.author | 辛旻諺 | zh_TW |
dc.contributor.author | Min-Yen Hsin | en |
dc.date.accessioned | 2023-09-22T17:02:39Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-09-22 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-10 | - |
dc.identifier.citation | [1] L. Lu, M. Liu, R. Sun, Y. Zheng, and P. Zhang, "Myocardial infarction: symptoms and treatments," Cell biochemistry and biophysics, vol. 72, pp. 865-867, 2015.
[2] B. Ibáñez, G. Heusch, M. Ovize, and F. Van de Werf, "Evolving therapies for myocardial ischemia/reperfusion injury," Journal of the American College of Cardiology, vol. 65, no. 14, pp. 1454-1471, 2015. [3] M. R. Blatchley, F. Hall, S. Wang, H. C. Pruitt, and S. Gerecht, "Hypoxia and matrix viscoelasticity sequentially regulate endothelial progenitor cluster-based vasculogenesis," Science advances, vol. 5, no. 3, p. eaau7518, 2019. [4] B. L. Krock, N. Skuli, and M. C. Simon, "Hypoxia-induced angiogenesis: good and evil," Genes & cancer, vol. 2, no. 12, pp. 1117-1133, 2011. [5] W. K. Cornwell III et al., "Clinical implications for exercise at altitude among individuals with cardiovascular disease: a scientific statement from the american heart association," Journal of the American Heart Association, vol. 10, no. 19, p. e023225, 2021. [6] K. S. Cunningham and A. I. Gotlieb, "The role of shear stress in the pathogenesis of atherosclerosis," Laboratory investigation, vol. 85, no. 1, pp. 9-23, 2005. [7] F. Meng, H. Cheng, J. Qian, X. Dai, Y. Huang, and Y. Fan, "In vitro fluidic systems: Applying shear stress on endothelial cells," Medicine in Novel Technology and Devices, p. 100143, 2022. [8] J. Frangos, L. McIntire, and S. Eskin, "Shear stress induced stimulation of mammalian cell metabolism," Biotechnology and bioengineering, vol. 32, no. 8, pp. 1053-1060, 1988. [9] M. Franzoni, I. Cattaneo, L. Longaretti, M. Figliuzzi, B. Ene-Iordache, and A. Remuzzi, "Endothelial cell activation by hemodynamic shear stress derived from arteriovenous fistula for hemodialysis access," American Journal of Physiology-Heart and Circulatory Physiology, vol. 310, no. 1, pp. H49-H59, 2016. [10] S. Feng et al., "Mechanical activation of hypoxia-inducible factor 1α drives endothelial dysfunction at atheroprone sites," Arteriosclerosis, thrombosis, and vascular biology, vol. 37, no. 11, pp. 2087-2101, 2017. [11] L. K. Chin, J. Q. Yu, Y. Fu, T. Yu, A. Q. Liu, and K. Q. Luo, "Production of reactive oxygen species in endothelial cells under different pulsatile shear stresses and glucose concentrations," Lab on a Chip, 10.1039/C0LC00651C vol. 11, no. 11, pp. 1856-1863, 2011, doi: 10.1039/C0LC00651C. [12] K. Hattori, Y. Munehira, H. Kobayashi, T. Satoh, S. Sugiura, and T. Kanamori, "Microfluidic perfusion culture chip providing different strengths of shear stress for analysis of vascular endothelial function," Journal of Bioscience and Bioengineering, vol. 118, no. 3, pp. 327-332, 2014/09/01/ 2014, doi: https://doi.org/10.1016/j.jbiosc.2014.02.006. [13] R. T. Mendes et al., "Hypoxia‐induced endothelial cell responses–possible roles during periodontal disease," Clinical and experimental dental research, vol. 4, no. 6, pp. 241-248, 2018. [14] H.-C. Shih, T.-A. Lee, H.-M. Wu, P.-L. Ko, W.-H. Liao, and Y.-C. Tung, "Microfluidic collective cell migration assay for study of endothelial cell proliferation and migration under combinations of oxygen gradients, tensions, and drug treatments," Scientific reports, vol. 9, no. 1, pp. 1-10, 2019. [15] S. McKeown, "Defining normoxia, physoxia and hypoxia in tumours—implications for treatment response," The British journal of radiology, vol. 87, no. 1035, p. 20130676, 2014. [16] J. A. Stuart et al., "How supraphysiological oxygen levels in standard cell culture affect oxygen-consuming reactions," Oxidative medicine and cellular longevity, vol. 2018, 2018. [17] D. Wu and P. Yotnda, "Induction and testing of hypoxia in cell culture," JoVE (Journal of Visualized Experiments), no. 54, p. e2899, 2011. [18] R. Wang, F. Jin, and H. Zhong, "A novel experimental hypoxia chamber for cell culture," American Journal of Cancer Research, vol. 4, no. 1, p. 53, 2014. [19] H. E. Abaci, R. Devendra, R. Soman, G. Drazer, and S. Gerecht, "Microbioreactors to manipulate oxygen tension and shear stress in the microenvironment of vascular stem and progenitor cells," Biotechnology and applied biochemistry, vol. 59, no. 2, pp. 97-105, 2012. [20] M. Busek, S. Grünzner, T. Steege, U. Klotzbach, and F. Sonntag, "Hypoxia-on-a-chip," Generating hypoxic conditions in microfluidic cell culture systems, vol. 2, no. 1, pp. 71-75, 2016, doi: doi:10.1515/cdbme-2016-0019. [21] D.-M. Chang and Y.-C. Tung, "Study Hypoxic Response under Cyclic Oxygen Gradients Generated in Microfluidic Devices Using Real-Time Fluorescence Imaging," Biosensors, vol. 12, no. 11, p. 1031, 2022. [22] Y.-C. Lin, P.-F. Tsai, and J. S.-B. Wu, "Protective effect of anthocyanidins against sodium dithionite-induced hypoxia injury in C6 glial cells," Journal of agricultural and food chemistry, vol. 62, no. 24, pp. 5603-5608, 2014. [23] C.-C. Peng, W.-H. Liao, Y.-H. Chen, C.-Y. Wu, and Y.-C. Tung, "A microfluidic cell culture array with various oxygen tensions," Lab on a Chip, vol. 13, no. 16, pp. 3239-3245, 2013. [24] Y.-A. Chen et al., "Generation of oxygen gradients in microfluidic devices for cell culture using spatially confined chemical reactions," Lab on a Chip, vol. 11, no. 21, pp. 3626-3633, 2011. [25] H.-M. Wu, T.-A. Lee, P.-L. Ko, W.-H. Liao, T.-H. Hsieh, and Y.-C. Tung, "Widefield frequency domain fluorescence lifetime imaging microscopy (FD-FLIM) for accurate measurement of oxygen gradients within microfluidic devices," Analyst, 10.1039/C9AN00143C vol. 144, no. 11, pp. 3494-3504, 2019, doi: 10.1039/C9AN00143C. [26] A. Yamagishi, K. Tanabe, M. Yokokawa, Y. Morimoto, M. Kinoshita, and H. Suzuki, "Microfluidic device coupled with a microfabricated oxygen electrode for the measurement of bactericidal activity of neutrophil-like cells," Analytica Chimica Acta, vol. 985, pp. 1-6, 2017/09/08/ 2017, doi: https://doi.org/10.1016/j.aca.2017.07.049. [27] S. M. Bonk et al., "Design and Characterization of a Sensorized Microfluidic Cell-Culture System with Electro-Thermal Micro-Pumps and Sensors for Cell Adhesion, Oxygen, and pH on a Glass Chip," Biosensors, vol. 5, no. 3, pp. 513-536, 2015. [Online]. Available: https://www.mdpi.com/2079-6374/5/3/513. [28] Y. Amao, K. Asai, T. Miyashita, and I. Okura, "Novel optical oxygen sensing material: platinum porphyrin‐fluoropolymer film," Polymers for Advanced Technologies, vol. 11, no. 8‐12, pp. 705-709, 2000. [29] G.-Y. Liou and P. Storz, "Reactive oxygen species in cancer," Free radical research, vol. 44, no. 5, pp. 479-496, 2010. [30] N. Chandel, E. Maltepe, E. Goldwasser, C. Mathieu, M. Simon, and P. Schumacker, "Mitochondrial reactive oxygen species trigger hypoxia-induced transcription," Proceedings of the National Academy of Sciences, vol. 95, no. 20, pp. 11715-11720, 1998. [31] A. Y. Chi, G. B. Waypa, P. T. Mungai, and P. T. Schumacker, "Prolonged hypoxia increases ROS signaling and RhoA activation in pulmonary artery smooth muscle and endothelial cells," Antioxidants & redox signaling, vol. 12, no. 5, pp. 603-610, 2010. [32] R. D. Guzy et al., "Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing," Cell Metabolism, vol. 1, no. 6, pp. 401-408, 2005/06/01/ 2005, doi: https://doi.org/10.1016/j.cmet.2005.05.001. [33] K. D. Mansfield, M. C. Simon, and B. Keith, "Hypoxic reduction in cellular glutathione levels requires mitochondrial reactive oxygen species," Journal of Applied Physiology, vol. 97, no. 4, pp. 1358-1366, 2004. [34] K. D. Mansfield et al., "Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-α activation," Cell Metabolism, vol. 1, no. 6, pp. 393-399, 2005/06/01/ 2005, doi: https://doi.org/10.1016/j.cmet.2005.05.003. [35] J. Chiu, B. Wung, J. Y. Shyy, H. Hsieh, and D. Wang, "Reactive oxygen species are involved in shear stress-induced intercellular adhesion molecule-1 expression in endothelial cells," Arteriosclerosis, thrombosis, and vascular biology, vol. 17, no. 12, pp. 3570-3577, 1997. [36] N. R. Prabhakar, Y.-J. Peng, and J. Nanduri, "Chapter 4 - Adaptive cardiorespiratory changes to chronic continuous and intermittent hypoxia," in Handbook of Clinical Neurology, vol. 188, R. Chen and P. G. Guyenet Eds.: Elsevier, 2022, pp. 103-123. [37] Y. Zhang, M. Dai, and Z. Yuan, "Methods for the detection of reactive oxygen species," Analytical Methods, vol. 10, no. 38, pp. 4625-4638, 2018. [38] H. J. Hsieh, C. C. Cheng, S. T. Wu, J. J. Chiu, B. S. Wung, and D. L. Wang, "Increase of reactive oxygen species (ROS) in endothelial cells by shear flow and involvement of ROS in shear‐induced c‐fos expression," Journal of cellular physiology, vol. 175, no. 2, pp. 156-162, 1998. [39] A. B. Fisher, S. Chien, A. I. Barakat, and R. M. Nerem, "Endothelial cellular response to altered shear stress," American Journal of Physiology-Lung Cellular and Molecular Physiology, vol. 281, no. 3, pp. L529-L533, 2001, doi: 10.1152/ajplung.2001.281.3.L529. [40] C.-W. Chang et al., "A polydimethylsiloxane–polycarbonate hybrid microfluidic device capable of generating perpendicular chemical and oxygen gradients for cell culture studies," Lab on a Chip, 10.1039/C4LC00732H vol. 14, no. 19, pp. 3762-3772, 2014, doi: 10.1039/C4LC00732H. [41] D. M. Lewis, H. E. Abaci, Y. Xu, and S. Gerecht, "Endothelial progenitor cell recruitment in a microfluidic vascular model," Biofabrication, vol. 7, no. 4, p. 045010, 2015. [42] P. M. Gerhart, A. L. Gerhart, and J. I. Hochstein, Munson, Young and Okiishi's Fundamentals of Fluid Mechanics. John Wiley & Sons, 2016. [43] F. White, "Solutions of the Newtonian viscous flow equations," Viscous Fluid Flow, pp. 104-217, 1991. [44] E. Roux, P. Bougaran, P. Dufourcq, and T. Couffinhal, "Fluid shear stress sensing by the endothelial layer," Frontiers in Physiology, vol. 11, p. 861, 2020. [45] N.-T. Huang, Y.-J. Hwong, and R. L. Lai, "A microfluidic microwell device for immunomagnetic single-cell trapping," Microfluidics and Nanofluidics, vol. 22, pp. 1-8, 2018. [46] T. Merkel, V. Bondar, K. Nagai, B. Freeman, and I. Pinnau, "Gas sorption, diffusion, and permeation in poly (dimethylsiloxane)," Journal of Polymer Science Part B: Polymer Physics, vol. 38, no. 3, pp. 415-434, 2000. [47] F. Vendruscolo, M. J. Rossi, W. Schmidell, and J. L. Ninow, "Determination of Oxygen Solubility in Liquid Media," ISRN Chemical Engineering, vol. 2012, p. 601458, 2012/06/20 2012, doi: 10.5402/2012/601458. [48] M. Levesque and R. Nerem, "The elongation and orientation of cultured endothelial cells in response to shear stress," 1985. [49] R. Sinha, S. Le Gac, N. Verdonschot, A. van den Berg, B. Koopman, and J. Rouwkema, "Endothelial cell alignment as a result of anisotropic strain and flow induced shear stress combinations," Scientific reports, vol. 6, no. 1, p. 29510, 2016. [50] J. M. Dolan, H. Meng, S. Singh, R. Paluch, and J. Kolega, "High fluid shear stress and spatial shear stress gradients affect endothelial proliferation, survival, and alignment," Annals of biomedical engineering, vol. 39, pp. 1620-1631, 2011. [51] B. E. Sumpio, J. Timothy Riley, and A. Dardik, "Cells in focus: endothelial cell," The International Journal of Biochemistry & Cell Biology, vol. 34, no. 12, pp. 1508-1512, 2002/12/01/ 2002, doi: https://doi.org/10.1016/S1357-2725(02)00075-4. [52] T. Songjaroen, R. M. Feeny, M. M. Mensack, W. Laiwattanapaisal, and C. S. Henry, "Label-free detection of C-reactive protein using an electrochemical DNA immunoassay," Sensing and bio-sensing research, vol. 8, pp. 14-19, 2016. [53] H. V. Tran, C. D. Huynh, H. V. Tran, and B. Piro, "Cyclic voltammetry, square wave voltammetry, electrochemical impedance spectroscopy and colorimetric method for hydrogen peroxide detection based on chitosan/silver nanocomposite," Arabian journal of chemistry, vol. 11, no. 4, pp. 453-459, 2018. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90010 | - |
dc.description.abstract | 本論文介紹了一種微流體裝置,用於研究缺氧和剪應力對內皮細胞行為的影響。內皮細胞在炎症、心血管疾病和癌症生長中發揮著關鍵作用。該微流體裝置能夠精確控制細胞培養室內的氧氣濃度分佈和剪應力大小,實現多重測試。通過將內皮細胞暴露在不同的缺氧和剪應力環境下,通過測量反應性氧化物種(ROS)以評估細胞內的氧化壓力,並進行細胞形態分析。研究結果表明,缺氧和剪應力可以調節ROS的產生,為心血管疾病和運動相關研究提供了重要見解。該裝置提供了比傳統方法更貼近生理的細胞培養環境,並可應用於抗癌藥物測試、腫瘤學研究和心血管疾病調查等領域。總體而言,該微流體裝置可作為瞭解內皮細胞對缺氧和剪應力反應機制的研究工具,其對氧氣濃度分佈和剪應力條件的精確控制有助於全面研究這些因素的影響,並推動血管生物學和相關學科的發展。 | zh_TW |
dc.description.abstract | This thesis introduces a microfluidic device developed to investigate the influence of hypoxia and shear stress on endothelial cell behavior. Endothelial cells are critical in inflammation, cardiovascular diseases, and cancer growth. The microfluidic device enables precise control of oxygen distribution and shear stress conditions within a cell culturing chamber, facilitating multiplex testing. By subjecting endothelial cells to varying hypoxia and shear stress levels, intracellular oxidative stress was evaluated through reactive oxygen species (ROS) measurements and cell morphology analysis. The findings indicate that hypoxia and shear stress can modulate ROS expression, offering valuable insights into vascular diseases and exercise-related research. The device provides a more physiologically relevant cell culturing environment than conventional methods, and its potential applications extend to anti-cancer medication testing, oncological studies, and cardiovascular disease investigations. In summary, the developed microfluidic device is a valuable tool for understanding the underlying mechanisms governing endothelial cell behavior in response to hypoxia and shear stress. The precise control over oxygen distribution and shear stress conditions facilitates comprehensive investigations into the effects of these factors, thereby contributing to advancements in the field of vascular biology and related disciplines. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:02:39Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-09-22T17:02:39Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | CONTENTS
口試委員會審定書 # 誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vii LIST OF TABLES xii Chapter 1 Introduction 1 1.1 Background 1 1.2 Literature review 3 1.2.1 Shear stress stimulation for cells response studies 3 1.2.2 Hypoxia condition generation for cell incubation 7 1.2.3 Oxygen level measurement in microfluidic devices 11 1.2.4 Reactive oxygen species (ROS) 13 1.2.5 Summary 16 1.3 Research motivation 20 1.4 Thesis structure 21 Chapter 2 Experimental Design 22 2.1 The microfluidic channel 22 2.1.1 Navier-Stokes equation 22 2.1.2 Shear stress 23 2.1.3 Oxygen distribution 24 2.2 Endothelial cells 25 2.3 Widefield frequency domain fluorescence lifetime imaging microscopy (FD-FLIM) 26 2.3.1 Lifetime of fluorescence 26 2.3.2 System setup 26 Chapter 3 Materials and Methods 28 3.1 The microfluidic channel designs 28 3.2 Mold and device fabrication 29 3.2.1 PDMS soft lithography 29 3.3 Pump setup design 32 3.4 Flow control and hypoxia condition generation 33 3.5 Cell line and culturing process 35 3.6 Fluorescent staining and microscopy process 36 3.7 Reactive oxygen species (ROS) measurement 37 3.8 Image acquisition 37 Chapter 4 Results and Discussion 39 4.1 Simulation results of the oxygen distribution profile and shear stress 39 4.2 FLIM measurement results 42 4.3 Cell image 43 4.3.1 Cell image processing procedure 43 4.3.2 Viability 44 4.3.3 Confluency 45 4.3.4 Orientation and morphology analysis 46 4.3.5 ROS generation 49 Chapter 5 Conclusion 52 Chapter 6 Future Work 54 Reference 56 Abbreviation 60 | - |
dc.language.iso | en | - |
dc.title | 可提供缺氧環境及剪應力刺激之微流道裝置對於血管內皮細胞型態及活性氧化物表現之研究 | zh_TW |
dc.title | A microfluidic device to study the coupling effect of hypoxia and shear stress on morphology and reactive oxygen species secretion of endothelial cells | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 董奕鍾;楊東霖;郭柏齡 | zh_TW |
dc.contributor.oralexamcommittee | Yi-Chung Tung;T-Tony Yang;Po-Ling Kuo | en |
dc.subject.keyword | 缺氧,剪應力,微流道,內皮細胞, | zh_TW |
dc.subject.keyword | Hypoxia,Shear stress,Microfluidic,Endothelial, | en |
dc.relation.page | 60 | - |
dc.identifier.doi | 10.6342/NTU202303662 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2023-08-11 | - |
dc.contributor.author-college | 電機資訊學院 | - |
dc.contributor.author-dept | 生醫電子與資訊學研究所 | - |
顯示於系所單位: | 生醫電子與資訊學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 目前未授權公開取用 | 5.79 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。