Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89946
Title: 預訓練:跨向以深度學習為基礎的旁通道黑箱 AES 分析
Pretraining: Towards Black-Box Deep Learning-Based Side-Channel Attack on AES Masking
Authors: 林其昌
Chi-Chang Lin
Advisor: 陳和麟
Ho-Lin Chen
Co-Advisor: 陳君朋
Jiun-Peng Chen
Keyword: 旁通道分析,特徵分析攻擊,黑箱原則,深度學習,預訓練,
Side-channel analysis,Profiling attack,Black-box principle,Deep learning,Pretraining,
Publication Year : 2023
Degree: 碩士
Abstract: 旁通道分析是一種竊取加解密金鑰的攻擊手法,透過裝置在加密過程中於物理媒介(如電磁波)產生的資訊洩漏,能夠繞過加密演算法本身的安全性,大幅降低攻擊複雜度。為因應此類型的攻擊,屏蔽防禦(masking)引進額外的隨機亂數,將攻擊標的拆分成統計上獨立於之的多個組成,以達到抵禦效果。由於此隨機亂數在一般情況下無法從裝置外部取得,故以攻擊者的角度而言,如何開發無須仰賴此亂數的黑箱攻擊,是攻擊能否作為實務運用的關鍵。
本文以黑箱攻擊為指導原則,於特徵分析攻擊的方法論之下,展示如何透過深度學習的預訓練方法,藉由事先訓練出仿照屏蔽防禦計算方式的模型,從而有效破解針對進階加密標準(AES)設計的屏蔽防禦。本文的實驗結果於標準資料集ASCADv1-f上的表現可媲美當前最先進的模型,並且額外具備超參數選擇的彈性以及更高的資源運用效率。如何將此預訓練方法有效運用到進階的屏蔽防禦類型,為未來的研究方向。
The side-channel attack, exploiting physical leakages such as electromagnetic radiation, steals secret keys from cryptographic devices, bypassing algorithmic robustness. Masking, a countermeasure, introduces extra randomness for secret sharing, often inaccessible in practical contexts. From an attacker’s point of view, black-box attack capability should be the guiding principle to develop attack packages concerning their applicability beyond the lab. Under the profiling attack framework, a black-box pretraining attack on AES is demonstrated how side-channel adversaries leverage prior knowledge of common arithmetic operations for masking. Constructed models mimic and overcome prevailing Boolean masking, yielding comparable results to the state-of-the-art on the benchmark dataset ASCADv1-f. Furthermore, this pretraining attack offers advantages such as hyperparameter flexibility and reduced resource consumption. Its extension to attack broader masking schemes is left for a more comprehensive exploration.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89946
DOI: 10.6342/NTU202303827
Fulltext Rights: 未授權
Appears in Collections:電機工程學系

Files in This Item:
File SizeFormat 
ntu-111-2.pdf
  Restricted Access
9.79 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved