請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89946完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳和麟 | zh_TW |
| dc.contributor.advisor | Ho-Lin Chen | en |
| dc.contributor.author | 林其昌 | zh_TW |
| dc.contributor.author | Chi-Chang Lin | en |
| dc.date.accessioned | 2023-09-22T16:47:16Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-09-22 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-11 | - |
| dc.identifier.citation | Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.
Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. pages 104–113, 1996. Xiangjun Lu, Chi Zhang, Pei Cao, Dawu Gu, and Haining Lu. Pay attention to raw traces: A deep learning architecture for end-to-end profiling attacks. 2021(3):235–274, 2021. https://tches.iacr.org/index.php/TCHES/article/view/8974. Loïc Masure and Rémi Strullu. Side channel analysis against the ANSSI’s protected AES implementation on ARM. Cryptology ePrint Archive, Report 2021/592, 2021. https://eprint.iacr.org/2021/592. Emmanuel Prouff, Remi Strullu, Ryad Benadjila, Eleonora Cagli, and Cecile Dumas. Study of deep learning techniques for side-channel analysis and introduction to ASCAD database. Cryptology ePrint Archive, Report 2018/053, 2018. https://eprint.iacr.org/2018/053. Guilherme Perin, Lichao Wu, and Stjepan Picek. Exploring feature selection scenarios for deep learning-based side-channel analysis. 2022(4):828–861, 2022. Thomas Popp Stefan Mangard, Elisabeth Oswald. Power Analysis Attacks. Springer New York, NY, 2007. Lennert Wouters, Victor Arribas, Benedikt Gierlichs, and Bart Preneel. Revisiting a methodology for efficient CNN architectures in profiling attacks. 2020(3):147–168, 2020. https://tches.iacr.org/index.php/TCHES/article/view/8586. Jared Willard, Xiaowei Jia, Shaoming Xu, Michael Steinbach, and Vipin Kumar. Integrating scientific knowledge with machine learning for engineering and environmental systems. ACM Computing Surveys, 55(4):1–37, 2022. Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David LopezPaz. mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412, 2017. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89946 | - |
| dc.description.abstract | 旁通道分析是一種竊取加解密金鑰的攻擊手法,透過裝置在加密過程中於物理媒介(如電磁波)產生的資訊洩漏,能夠繞過加密演算法本身的安全性,大幅降低攻擊複雜度。為因應此類型的攻擊,屏蔽防禦(masking)引進額外的隨機亂數,將攻擊標的拆分成統計上獨立於之的多個組成,以達到抵禦效果。由於此隨機亂數在一般情況下無法從裝置外部取得,故以攻擊者的角度而言,如何開發無須仰賴此亂數的黑箱攻擊,是攻擊能否作為實務運用的關鍵。
本文以黑箱攻擊為指導原則,於特徵分析攻擊的方法論之下,展示如何透過深度學習的預訓練方法,藉由事先訓練出仿照屏蔽防禦計算方式的模型,從而有效破解針對進階加密標準(AES)設計的屏蔽防禦。本文的實驗結果於標準資料集ASCADv1-f上的表現可媲美當前最先進的模型,並且額外具備超參數選擇的彈性以及更高的資源運用效率。如何將此預訓練方法有效運用到進階的屏蔽防禦類型,為未來的研究方向。 | zh_TW |
| dc.description.abstract | The side-channel attack, exploiting physical leakages such as electromagnetic radiation, steals secret keys from cryptographic devices, bypassing algorithmic robustness. Masking, a countermeasure, introduces extra randomness for secret sharing, often inaccessible in practical contexts. From an attacker’s point of view, black-box attack capability should be the guiding principle to develop attack packages concerning their applicability beyond the lab. Under the profiling attack framework, a black-box pretraining attack on AES is demonstrated how side-channel adversaries leverage prior knowledge of common arithmetic operations for masking. Constructed models mimic and overcome prevailing Boolean masking, yielding comparable results to the state-of-the-art on the benchmark dataset ASCADv1-f. Furthermore, this pretraining attack offers advantages such as hyperparameter flexibility and reduced resource consumption. Its extension to attack broader masking schemes is left for a more comprehensive exploration. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T16:47:16Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-22T16:47:16Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 3
Abstract 5 Contents 7 List of Figures 11 List of Tables 13 Chapter 1 Introduction 1 1.1 Motivation 3 Chapter 2 Background of SCA 7 2.1 Advanced Encryption Standard (AES) 8 2.1.1 Operations in Galois Field GF(256) 9 2.2 Profiling Attacks 11 2.2.1 An Example – Gaussian Template Attack (GTA) 11 2.2.2 General Profiling Attack Framework 13 2.3 Countermeasure: Masking Schemes on AES-128 16 2.4 Mask-Agnostic: The Black-Box Attack Principle 18 2.4.1 Mask-Reliant GTA 18 2.4.2 Mask-Agnostic Constraints 19 Chapter 3 Deep Learning-Based Profiling Attack 21 3.1 Learning and Theory 22 3.1.1 Basic Architectures of Neural Networks 22 3.1.1.1 Perceptron 22 3.1.1.2 Multi-Layer Perceptron (MLP) 24 3.1.2 Basic Theory of Learning: An Overview 24 3.2 Deep Learning as Profiling Attack 28 3.3 SCA Datasets 29 Chapter 4 Pretraining Attack 31 4.1 Problem Formulation 33 4.2 Issues with Freezing Final Layers 34 4.3 Data Mixup 36 4.4 Mixup as A Potential Mitigation 37 Chapter 5 Experimental Results 41 5.1 General Experimental Settings 41 5.2 Pretraining Attack on Two-Share Boolean Masking 42 5.2.1 Preparation 42 5.2.2 The Base Case 44 5.2.3 Exploratory Tests 46 5.2.3.1 Flexibility Test: Hyperparameter Decisions 46 5.2.3.2 Resource-Restricted Test: 10,000 Profiling Traces 48 5.2.3.3 Raw-Trace Test 50 5.3 Pretraining for Two-share Multiplicative Masking 52 5.4 Summary 55 Chapter 6 Conclusion 57 References 59 | - |
| dc.language.iso | en | - |
| dc.subject | 特徵分析攻擊 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 黑箱原則 | zh_TW |
| dc.subject | 旁通道分析 | zh_TW |
| dc.subject | 預訓練 | zh_TW |
| dc.subject | Side-channel analysis | en |
| dc.subject | Deep learning | en |
| dc.subject | Black-box principle | en |
| dc.subject | Profiling attack | en |
| dc.subject | Pretraining | en |
| dc.title | 預訓練:跨向以深度學習為基礎的旁通道黑箱 AES 分析 | zh_TW |
| dc.title | Pretraining: Towards Black-Box Deep Learning-Based Side-Channel Attack on AES Masking | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 陳君朋 | zh_TW |
| dc.contributor.coadvisor | Jiun-Peng Chen | en |
| dc.contributor.oralexamcommittee | 王奕翔;林智仁;雷欽隆 | zh_TW |
| dc.contributor.oralexamcommittee | I-Hsiang Wang;Chih-Jen Lin;Chin-Lung Lei | en |
| dc.subject.keyword | 旁通道分析,特徵分析攻擊,黑箱原則,深度學習,預訓練, | zh_TW |
| dc.subject.keyword | Side-channel analysis,Profiling attack,Black-box principle,Deep learning,Pretraining, | en |
| dc.relation.page | 60 | - |
| dc.identifier.doi | 10.6342/NTU202303827 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-13 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電機工程學系 | - |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 9.79 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
