Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89946
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳和麟zh_TW
dc.contributor.advisorHo-Lin Chenen
dc.contributor.author林其昌zh_TW
dc.contributor.authorChi-Chang Linen
dc.date.accessioned2023-09-22T16:47:16Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-22-
dc.date.issued2023-
dc.date.submitted2023-08-11-
dc.identifier.citationKaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.
Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. pages 104–113, 1996.
Xiangjun Lu, Chi Zhang, Pei Cao, Dawu Gu, and Haining Lu. Pay attention to raw traces: A deep learning architecture for end-to-end profiling attacks. 2021(3):235–274, 2021. https://tches.iacr.org/index.php/TCHES/article/view/8974.
Loïc Masure and Rémi Strullu. Side channel analysis against the ANSSI’s protected AES implementation on ARM. Cryptology ePrint Archive, Report 2021/592, 2021. https://eprint.iacr.org/2021/592.
Emmanuel Prouff, Remi Strullu, Ryad Benadjila, Eleonora Cagli, and Cecile Dumas. Study of deep learning techniques for side-channel analysis and introduction to ASCAD database. Cryptology ePrint Archive, Report 2018/053, 2018. https://eprint.iacr.org/2018/053.
Guilherme Perin, Lichao Wu, and Stjepan Picek. Exploring feature selection scenarios for deep learning-based side-channel analysis. 2022(4):828–861, 2022.
Thomas Popp Stefan Mangard, Elisabeth Oswald. Power Analysis Attacks. Springer New York, NY, 2007.
Lennert Wouters, Victor Arribas, Benedikt Gierlichs, and Bart Preneel. Revisiting a methodology for efficient CNN architectures in profiling attacks. 2020(3):147–168, 2020. https://tches.iacr.org/index.php/TCHES/article/view/8586.
Jared Willard, Xiaowei Jia, Shaoming Xu, Michael Steinbach, and Vipin Kumar. Integrating scientific knowledge with machine learning for engineering and environmental systems. ACM Computing Surveys, 55(4):1–37, 2022.
Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David LopezPaz. mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412, 2017.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89946-
dc.description.abstract旁通道分析是一種竊取加解密金鑰的攻擊手法,透過裝置在加密過程中於物理媒介(如電磁波)產生的資訊洩漏,能夠繞過加密演算法本身的安全性,大幅降低攻擊複雜度。為因應此類型的攻擊,屏蔽防禦(masking)引進額外的隨機亂數,將攻擊標的拆分成統計上獨立於之的多個組成,以達到抵禦效果。由於此隨機亂數在一般情況下無法從裝置外部取得,故以攻擊者的角度而言,如何開發無須仰賴此亂數的黑箱攻擊,是攻擊能否作為實務運用的關鍵。
本文以黑箱攻擊為指導原則,於特徵分析攻擊的方法論之下,展示如何透過深度學習的預訓練方法,藉由事先訓練出仿照屏蔽防禦計算方式的模型,從而有效破解針對進階加密標準(AES)設計的屏蔽防禦。本文的實驗結果於標準資料集ASCADv1-f上的表現可媲美當前最先進的模型,並且額外具備超參數選擇的彈性以及更高的資源運用效率。如何將此預訓練方法有效運用到進階的屏蔽防禦類型,為未來的研究方向。
zh_TW
dc.description.abstractThe side-channel attack, exploiting physical leakages such as electromagnetic radiation, steals secret keys from cryptographic devices, bypassing algorithmic robustness. Masking, a countermeasure, introduces extra randomness for secret sharing, often inaccessible in practical contexts. From an attacker’s point of view, black-box attack capability should be the guiding principle to develop attack packages concerning their applicability beyond the lab. Under the profiling attack framework, a black-box pretraining attack on AES is demonstrated how side-channel adversaries leverage prior knowledge of common arithmetic operations for masking. Constructed models mimic and overcome prevailing Boolean masking, yielding comparable results to the state-of-the-art on the benchmark dataset ASCADv1-f. Furthermore, this pretraining attack offers advantages such as hyperparameter flexibility and reduced resource consumption. Its extension to attack broader masking schemes is left for a more comprehensive exploration.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T16:47:16Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-22T16:47:16Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 3
Abstract 5
Contents 7
List of Figures 11
List of Tables 13
Chapter 1 Introduction 1
1.1 Motivation 3
Chapter 2 Background of SCA 7
2.1 Advanced Encryption Standard (AES) 8
2.1.1 Operations in Galois Field GF(256) 9
2.2 Profiling Attacks 11
2.2.1 An Example – Gaussian Template Attack (GTA) 11
2.2.2 General Profiling Attack Framework 13
2.3 Countermeasure: Masking Schemes on AES-128 16
2.4 Mask-Agnostic: The Black-Box Attack Principle 18
2.4.1 Mask-Reliant GTA 18
2.4.2 Mask-Agnostic Constraints 19
Chapter 3 Deep Learning-Based Profiling Attack 21
3.1 Learning and Theory 22
3.1.1 Basic Architectures of Neural Networks 22
3.1.1.1 Perceptron 22
3.1.1.2 Multi-Layer Perceptron (MLP) 24
3.1.2 Basic Theory of Learning: An Overview 24
3.2 Deep Learning as Profiling Attack 28
3.3 SCA Datasets 29
Chapter 4 Pretraining Attack 31
4.1 Problem Formulation 33
4.2 Issues with Freezing Final Layers 34
4.3 Data Mixup 36
4.4 Mixup as A Potential Mitigation 37
Chapter 5 Experimental Results 41
5.1 General Experimental Settings 41
5.2 Pretraining Attack on Two-Share Boolean Masking 42
5.2.1 Preparation 42
5.2.2 The Base Case 44
5.2.3 Exploratory Tests 46
5.2.3.1 Flexibility Test: Hyperparameter Decisions 46
5.2.3.2 Resource-Restricted Test: 10,000 Profiling Traces 48
5.2.3.3 Raw-Trace Test 50
5.3 Pretraining for Two-share Multiplicative Masking 52
5.4 Summary 55
Chapter 6 Conclusion 57
References 59
-
dc.language.isoen-
dc.subject特徵分析攻擊zh_TW
dc.subject深度學習zh_TW
dc.subject黑箱原則zh_TW
dc.subject旁通道分析zh_TW
dc.subject預訓練zh_TW
dc.subjectSide-channel analysisen
dc.subjectDeep learningen
dc.subjectBlack-box principleen
dc.subjectProfiling attacken
dc.subjectPretrainingen
dc.title預訓練:跨向以深度學習為基礎的旁通道黑箱 AES 分析zh_TW
dc.titlePretraining: Towards Black-Box Deep Learning-Based Side-Channel Attack on AES Maskingen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.coadvisor陳君朋zh_TW
dc.contributor.coadvisorJiun-Peng Chenen
dc.contributor.oralexamcommittee王奕翔;林智仁;雷欽隆zh_TW
dc.contributor.oralexamcommitteeI-Hsiang Wang;Chih-Jen Lin;Chin-Lung Leien
dc.subject.keyword旁通道分析,特徵分析攻擊,黑箱原則,深度學習,預訓練,zh_TW
dc.subject.keywordSide-channel analysis,Profiling attack,Black-box principle,Deep learning,Pretraining,en
dc.relation.page60-
dc.identifier.doi10.6342/NTU202303827-
dc.rights.note未授權-
dc.date.accepted2023-08-13-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電機工程學系-
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
9.79 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved